Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( CHOICE /\ A e. V ) -> A e. V ) |
2 |
|
vex |
|- x e. _V |
3 |
|
simpl |
|- ( ( CHOICE /\ A e. V ) -> CHOICE ) |
4 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
5 |
3 4
|
sylib |
|- ( ( CHOICE /\ A e. V ) -> dom card = _V ) |
6 |
2 5
|
eleqtrrid |
|- ( ( CHOICE /\ A e. V ) -> x e. dom card ) |
7 |
|
numacn |
|- ( A e. V -> ( x e. dom card -> x e. AC_ A ) ) |
8 |
1 6 7
|
sylc |
|- ( ( CHOICE /\ A e. V ) -> x e. AC_ A ) |
9 |
2
|
a1i |
|- ( ( CHOICE /\ A e. V ) -> x e. _V ) |
10 |
8 9
|
2thd |
|- ( ( CHOICE /\ A e. V ) -> ( x e. AC_ A <-> x e. _V ) ) |
11 |
10
|
eqrdv |
|- ( ( CHOICE /\ A e. V ) -> AC_ A = _V ) |