| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aceq3lem.1 |
|- F = ( w e. dom y |-> ( f ` { u | w y u } ) ) |
| 2 |
|
vex |
|- y e. _V |
| 3 |
2
|
rnex |
|- ran y e. _V |
| 4 |
3
|
pwex |
|- ~P ran y e. _V |
| 5 |
|
raleq |
|- ( x = ~P ran y -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 6 |
5
|
exbidv |
|- ( x = ~P ran y -> ( E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 7 |
4 6
|
spcv |
|- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 8 |
|
df-mpt |
|- ( w e. dom y |-> ( f ` { u | w y u } ) ) = { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } |
| 9 |
1 8
|
eqtri |
|- F = { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } |
| 10 |
|
vex |
|- w e. _V |
| 11 |
10
|
eldm |
|- ( w e. dom y <-> E. u w y u ) |
| 12 |
|
abn0 |
|- ( { u | w y u } =/= (/) <-> E. u w y u ) |
| 13 |
11 12
|
bitr4i |
|- ( w e. dom y <-> { u | w y u } =/= (/) ) |
| 14 |
|
vex |
|- u e. _V |
| 15 |
10 14
|
brelrn |
|- ( w y u -> u e. ran y ) |
| 16 |
15
|
abssi |
|- { u | w y u } C_ ran y |
| 17 |
3 16
|
elpwi2 |
|- { u | w y u } e. ~P ran y |
| 18 |
|
neeq1 |
|- ( z = { u | w y u } -> ( z =/= (/) <-> { u | w y u } =/= (/) ) ) |
| 19 |
|
fveq2 |
|- ( z = { u | w y u } -> ( f ` z ) = ( f ` { u | w y u } ) ) |
| 20 |
|
id |
|- ( z = { u | w y u } -> z = { u | w y u } ) |
| 21 |
19 20
|
eleq12d |
|- ( z = { u | w y u } -> ( ( f ` z ) e. z <-> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 22 |
18 21
|
imbi12d |
|- ( z = { u | w y u } -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) ) |
| 23 |
22
|
rspcv |
|- ( { u | w y u } e. ~P ran y -> ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) ) |
| 24 |
17 23
|
ax-mp |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 25 |
13 24
|
biimtrid |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( w e. dom y -> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 26 |
25
|
imp |
|- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> ( f ` { u | w y u } ) e. { u | w y u } ) |
| 27 |
|
fvex |
|- ( f ` { u | w y u } ) e. _V |
| 28 |
|
breq2 |
|- ( z = ( f ` { u | w y u } ) -> ( w y z <-> w y ( f ` { u | w y u } ) ) ) |
| 29 |
|
breq2 |
|- ( u = z -> ( w y u <-> w y z ) ) |
| 30 |
29
|
cbvabv |
|- { u | w y u } = { z | w y z } |
| 31 |
27 28 30
|
elab2 |
|- ( ( f ` { u | w y u } ) e. { u | w y u } <-> w y ( f ` { u | w y u } ) ) |
| 32 |
26 31
|
sylib |
|- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> w y ( f ` { u | w y u } ) ) |
| 33 |
|
breq2 |
|- ( h = ( f ` { u | w y u } ) -> ( w y h <-> w y ( f ` { u | w y u } ) ) ) |
| 34 |
32 33
|
syl5ibrcom |
|- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> ( h = ( f ` { u | w y u } ) -> w y h ) ) |
| 35 |
34
|
expimpd |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( ( w e. dom y /\ h = ( f ` { u | w y u } ) ) -> w y h ) ) |
| 36 |
35
|
ssopab2dv |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } C_ { <. w , h >. | w y h } ) |
| 37 |
|
opabss |
|- { <. w , h >. | w y h } C_ y |
| 38 |
36 37
|
sstrdi |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } C_ y ) |
| 39 |
9 38
|
eqsstrid |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> F C_ y ) |
| 40 |
27 1
|
fnmpti |
|- F Fn dom y |
| 41 |
2
|
ssex |
|- ( F C_ y -> F e. _V ) |
| 42 |
41
|
adantr |
|- ( ( F C_ y /\ F Fn dom y ) -> F e. _V ) |
| 43 |
|
sseq1 |
|- ( g = F -> ( g C_ y <-> F C_ y ) ) |
| 44 |
|
fneq1 |
|- ( g = F -> ( g Fn dom y <-> F Fn dom y ) ) |
| 45 |
43 44
|
anbi12d |
|- ( g = F -> ( ( g C_ y /\ g Fn dom y ) <-> ( F C_ y /\ F Fn dom y ) ) ) |
| 46 |
45
|
spcegv |
|- ( F e. _V -> ( ( F C_ y /\ F Fn dom y ) -> E. g ( g C_ y /\ g Fn dom y ) ) ) |
| 47 |
42 46
|
mpcom |
|- ( ( F C_ y /\ F Fn dom y ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 48 |
39 40 47
|
sylancl |
|- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 49 |
48
|
exlimiv |
|- ( E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 50 |
7 49
|
syl |
|- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 51 |
|
sseq1 |
|- ( g = f -> ( g C_ y <-> f C_ y ) ) |
| 52 |
|
fneq1 |
|- ( g = f -> ( g Fn dom y <-> f Fn dom y ) ) |
| 53 |
51 52
|
anbi12d |
|- ( g = f -> ( ( g C_ y /\ g Fn dom y ) <-> ( f C_ y /\ f Fn dom y ) ) ) |
| 54 |
53
|
cbvexvw |
|- ( E. g ( g C_ y /\ g Fn dom y ) <-> E. f ( f C_ y /\ f Fn dom y ) ) |
| 55 |
50 54
|
sylib |
|- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f ( f C_ y /\ f Fn dom y ) ) |