| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 | 1 | ackbij1lem17 |  |-  F : ( ~P _om i^i Fin ) -1-1-> _om | 
						
							| 3 |  | f1f |  |-  ( F : ( ~P _om i^i Fin ) -1-1-> _om -> F : ( ~P _om i^i Fin ) --> _om ) | 
						
							| 4 |  | frn |  |-  ( F : ( ~P _om i^i Fin ) --> _om -> ran F C_ _om ) | 
						
							| 5 | 2 3 4 | mp2b |  |-  ran F C_ _om | 
						
							| 6 |  | eleq1 |  |-  ( b = (/) -> ( b e. ran F <-> (/) e. ran F ) ) | 
						
							| 7 |  | eleq1 |  |-  ( b = a -> ( b e. ran F <-> a e. ran F ) ) | 
						
							| 8 |  | eleq1 |  |-  ( b = suc a -> ( b e. ran F <-> suc a e. ran F ) ) | 
						
							| 9 |  | peano1 |  |-  (/) e. _om | 
						
							| 10 |  | ackbij1lem3 |  |-  ( (/) e. _om -> (/) e. ( ~P _om i^i Fin ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  (/) e. ( ~P _om i^i Fin ) | 
						
							| 12 | 1 | ackbij1lem13 |  |-  ( F ` (/) ) = (/) | 
						
							| 13 |  | fveqeq2 |  |-  ( a = (/) -> ( ( F ` a ) = (/) <-> ( F ` (/) ) = (/) ) ) | 
						
							| 14 | 13 | rspcev |  |-  ( ( (/) e. ( ~P _om i^i Fin ) /\ ( F ` (/) ) = (/) ) -> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) | 
						
							| 15 | 11 12 14 | mp2an |  |-  E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) | 
						
							| 16 |  | f1fn |  |-  ( F : ( ~P _om i^i Fin ) -1-1-> _om -> F Fn ( ~P _om i^i Fin ) ) | 
						
							| 17 | 2 16 | ax-mp |  |-  F Fn ( ~P _om i^i Fin ) | 
						
							| 18 |  | fvelrnb |  |-  ( F Fn ( ~P _om i^i Fin ) -> ( (/) e. ran F <-> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( (/) e. ran F <-> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) | 
						
							| 20 | 15 19 | mpbir |  |-  (/) e. ran F | 
						
							| 21 | 1 | ackbij1lem18 |  |-  ( c e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( a e. _om /\ c e. ( ~P _om i^i Fin ) ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) ) | 
						
							| 23 |  | suceq |  |-  ( ( F ` c ) = a -> suc ( F ` c ) = suc a ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( ( F ` c ) = a -> ( ( F ` b ) = suc ( F ` c ) <-> ( F ` b ) = suc a ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( ( F ` c ) = a -> ( E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) | 
						
							| 26 | 22 25 | syl5ibcom |  |-  ( ( a e. _om /\ c e. ( ~P _om i^i Fin ) ) -> ( ( F ` c ) = a -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) | 
						
							| 27 | 26 | rexlimdva |  |-  ( a e. _om -> ( E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) | 
						
							| 28 |  | fvelrnb |  |-  ( F Fn ( ~P _om i^i Fin ) -> ( a e. ran F <-> E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a ) ) | 
						
							| 29 | 17 28 | ax-mp |  |-  ( a e. ran F <-> E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a ) | 
						
							| 30 |  | fvelrnb |  |-  ( F Fn ( ~P _om i^i Fin ) -> ( suc a e. ran F <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) | 
						
							| 31 | 17 30 | ax-mp |  |-  ( suc a e. ran F <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) | 
						
							| 32 | 27 29 31 | 3imtr4g |  |-  ( a e. _om -> ( a e. ran F -> suc a e. ran F ) ) | 
						
							| 33 | 6 7 8 7 20 32 | finds |  |-  ( a e. _om -> a e. ran F ) | 
						
							| 34 | 33 | ssriv |  |-  _om C_ ran F | 
						
							| 35 | 5 34 | eqssi |  |-  ran F = _om | 
						
							| 36 |  | dff1o5 |  |-  ( F : ( ~P _om i^i Fin ) -1-1-onto-> _om <-> ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ran F = _om ) ) | 
						
							| 37 | 2 35 36 | mpbir2an |  |-  F : ( ~P _om i^i Fin ) -1-1-onto-> _om |