Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
2 |
1
|
ackbij1lem17 |
|- F : ( ~P _om i^i Fin ) -1-1-> _om |
3 |
|
f1f |
|- ( F : ( ~P _om i^i Fin ) -1-1-> _om -> F : ( ~P _om i^i Fin ) --> _om ) |
4 |
|
frn |
|- ( F : ( ~P _om i^i Fin ) --> _om -> ran F C_ _om ) |
5 |
2 3 4
|
mp2b |
|- ran F C_ _om |
6 |
|
eleq1 |
|- ( b = (/) -> ( b e. ran F <-> (/) e. ran F ) ) |
7 |
|
eleq1 |
|- ( b = a -> ( b e. ran F <-> a e. ran F ) ) |
8 |
|
eleq1 |
|- ( b = suc a -> ( b e. ran F <-> suc a e. ran F ) ) |
9 |
|
peano1 |
|- (/) e. _om |
10 |
|
ackbij1lem3 |
|- ( (/) e. _om -> (/) e. ( ~P _om i^i Fin ) ) |
11 |
9 10
|
ax-mp |
|- (/) e. ( ~P _om i^i Fin ) |
12 |
1
|
ackbij1lem13 |
|- ( F ` (/) ) = (/) |
13 |
|
fveqeq2 |
|- ( a = (/) -> ( ( F ` a ) = (/) <-> ( F ` (/) ) = (/) ) ) |
14 |
13
|
rspcev |
|- ( ( (/) e. ( ~P _om i^i Fin ) /\ ( F ` (/) ) = (/) ) -> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) |
15 |
11 12 14
|
mp2an |
|- E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) |
16 |
|
f1fn |
|- ( F : ( ~P _om i^i Fin ) -1-1-> _om -> F Fn ( ~P _om i^i Fin ) ) |
17 |
2 16
|
ax-mp |
|- F Fn ( ~P _om i^i Fin ) |
18 |
|
fvelrnb |
|- ( F Fn ( ~P _om i^i Fin ) -> ( (/) e. ran F <-> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) ) |
19 |
17 18
|
ax-mp |
|- ( (/) e. ran F <-> E. a e. ( ~P _om i^i Fin ) ( F ` a ) = (/) ) |
20 |
15 19
|
mpbir |
|- (/) e. ran F |
21 |
1
|
ackbij1lem18 |
|- ( c e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) ) |
22 |
21
|
adantl |
|- ( ( a e. _om /\ c e. ( ~P _om i^i Fin ) ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) ) |
23 |
|
suceq |
|- ( ( F ` c ) = a -> suc ( F ` c ) = suc a ) |
24 |
23
|
eqeq2d |
|- ( ( F ` c ) = a -> ( ( F ` b ) = suc ( F ` c ) <-> ( F ` b ) = suc a ) ) |
25 |
24
|
rexbidv |
|- ( ( F ` c ) = a -> ( E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` c ) <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) |
26 |
22 25
|
syl5ibcom |
|- ( ( a e. _om /\ c e. ( ~P _om i^i Fin ) ) -> ( ( F ` c ) = a -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) |
27 |
26
|
rexlimdva |
|- ( a e. _om -> ( E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) |
28 |
|
fvelrnb |
|- ( F Fn ( ~P _om i^i Fin ) -> ( a e. ran F <-> E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a ) ) |
29 |
17 28
|
ax-mp |
|- ( a e. ran F <-> E. c e. ( ~P _om i^i Fin ) ( F ` c ) = a ) |
30 |
|
fvelrnb |
|- ( F Fn ( ~P _om i^i Fin ) -> ( suc a e. ran F <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) ) |
31 |
17 30
|
ax-mp |
|- ( suc a e. ran F <-> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc a ) |
32 |
27 29 31
|
3imtr4g |
|- ( a e. _om -> ( a e. ran F -> suc a e. ran F ) ) |
33 |
6 7 8 7 20 32
|
finds |
|- ( a e. _om -> a e. ran F ) |
34 |
33
|
ssriv |
|- _om C_ ran F |
35 |
5 34
|
eqssi |
|- ran F = _om |
36 |
|
dff1o5 |
|- ( F : ( ~P _om i^i Fin ) -1-1-onto-> _om <-> ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ran F = _om ) ) |
37 |
2 35 36
|
mpbir2an |
|- F : ( ~P _om i^i Fin ) -1-1-onto-> _om |