| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 | 1 | ackbij1lem17 |  |-  F : ( ~P _om i^i Fin ) -1-1-> _om | 
						
							| 3 |  | ackbij2lem1 |  |-  ( A e. _om -> ~P A C_ ( ~P _om i^i Fin ) ) | 
						
							| 4 |  | pwexg |  |-  ( A e. _om -> ~P A e. _V ) | 
						
							| 5 |  | f1imaeng |  |-  ( ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ~P A C_ ( ~P _om i^i Fin ) /\ ~P A e. _V ) -> ( F " ~P A ) ~~ ~P A ) | 
						
							| 6 | 2 3 4 5 | mp3an2i |  |-  ( A e. _om -> ( F " ~P A ) ~~ ~P A ) | 
						
							| 7 |  | nnfi |  |-  ( A e. _om -> A e. Fin ) | 
						
							| 8 |  | pwfi |  |-  ( A e. Fin <-> ~P A e. Fin ) | 
						
							| 9 | 7 8 | sylib |  |-  ( A e. _om -> ~P A e. Fin ) | 
						
							| 10 |  | ficardid |  |-  ( ~P A e. Fin -> ( card ` ~P A ) ~~ ~P A ) | 
						
							| 11 |  | ensym |  |-  ( ( card ` ~P A ) ~~ ~P A -> ~P A ~~ ( card ` ~P A ) ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( A e. _om -> ~P A ~~ ( card ` ~P A ) ) | 
						
							| 13 |  | entr |  |-  ( ( ( F " ~P A ) ~~ ~P A /\ ~P A ~~ ( card ` ~P A ) ) -> ( F " ~P A ) ~~ ( card ` ~P A ) ) | 
						
							| 14 | 6 12 13 | syl2anc |  |-  ( A e. _om -> ( F " ~P A ) ~~ ( card ` ~P A ) ) | 
						
							| 15 |  | onfin2 |  |-  _om = ( On i^i Fin ) | 
						
							| 16 |  | inss2 |  |-  ( On i^i Fin ) C_ Fin | 
						
							| 17 | 15 16 | eqsstri |  |-  _om C_ Fin | 
						
							| 18 |  | ficardom |  |-  ( ~P A e. Fin -> ( card ` ~P A ) e. _om ) | 
						
							| 19 | 9 18 | syl |  |-  ( A e. _om -> ( card ` ~P A ) e. _om ) | 
						
							| 20 | 17 19 | sselid |  |-  ( A e. _om -> ( card ` ~P A ) e. Fin ) | 
						
							| 21 |  | php3 |  |-  ( ( ( card ` ~P A ) e. Fin /\ ( F " ~P A ) C. ( card ` ~P A ) ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) | 
						
							| 22 | 21 | ex |  |-  ( ( card ` ~P A ) e. Fin -> ( ( F " ~P A ) C. ( card ` ~P A ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) ) | 
						
							| 23 | 20 22 | syl |  |-  ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) ) | 
						
							| 24 |  | sdomnen |  |-  ( ( F " ~P A ) ~< ( card ` ~P A ) -> -. ( F " ~P A ) ~~ ( card ` ~P A ) ) | 
						
							| 25 | 23 24 | syl6 |  |-  ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) -> -. ( F " ~P A ) ~~ ( card ` ~P A ) ) ) | 
						
							| 26 | 14 25 | mt2d |  |-  ( A e. _om -> -. ( F " ~P A ) C. ( card ` ~P A ) ) | 
						
							| 27 |  | fvex |  |-  ( F ` a ) e. _V | 
						
							| 28 |  | ackbij1lem3 |  |-  ( A e. _om -> A e. ( ~P _om i^i Fin ) ) | 
						
							| 29 |  | elpwi |  |-  ( a e. ~P A -> a C_ A ) | 
						
							| 30 | 1 | ackbij1lem12 |  |-  ( ( A e. ( ~P _om i^i Fin ) /\ a C_ A ) -> ( F ` a ) C_ ( F ` A ) ) | 
						
							| 31 | 28 29 30 | syl2an |  |-  ( ( A e. _om /\ a e. ~P A ) -> ( F ` a ) C_ ( F ` A ) ) | 
						
							| 32 | 1 | ackbij1lem10 |  |-  F : ( ~P _om i^i Fin ) --> _om | 
						
							| 33 |  | peano1 |  |-  (/) e. _om | 
						
							| 34 | 32 33 | f0cli |  |-  ( F ` a ) e. _om | 
						
							| 35 |  | nnord |  |-  ( ( F ` a ) e. _om -> Ord ( F ` a ) ) | 
						
							| 36 | 34 35 | ax-mp |  |-  Ord ( F ` a ) | 
						
							| 37 | 32 33 | f0cli |  |-  ( F ` A ) e. _om | 
						
							| 38 |  | nnord |  |-  ( ( F ` A ) e. _om -> Ord ( F ` A ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  Ord ( F ` A ) | 
						
							| 40 |  | ordsucsssuc |  |-  ( ( Ord ( F ` a ) /\ Ord ( F ` A ) ) -> ( ( F ` a ) C_ ( F ` A ) <-> suc ( F ` a ) C_ suc ( F ` A ) ) ) | 
						
							| 41 | 36 39 40 | mp2an |  |-  ( ( F ` a ) C_ ( F ` A ) <-> suc ( F ` a ) C_ suc ( F ` A ) ) | 
						
							| 42 | 31 41 | sylib |  |-  ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` a ) C_ suc ( F ` A ) ) | 
						
							| 43 | 1 | ackbij1lem14 |  |-  ( A e. _om -> ( F ` { A } ) = suc ( F ` A ) ) | 
						
							| 44 | 1 | ackbij1lem8 |  |-  ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) | 
						
							| 45 | 43 44 | eqtr3d |  |-  ( A e. _om -> suc ( F ` A ) = ( card ` ~P A ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` A ) = ( card ` ~P A ) ) | 
						
							| 47 | 42 46 | sseqtrd |  |-  ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` a ) C_ ( card ` ~P A ) ) | 
						
							| 48 |  | sucssel |  |-  ( ( F ` a ) e. _V -> ( suc ( F ` a ) C_ ( card ` ~P A ) -> ( F ` a ) e. ( card ` ~P A ) ) ) | 
						
							| 49 | 27 47 48 | mpsyl |  |-  ( ( A e. _om /\ a e. ~P A ) -> ( F ` a ) e. ( card ` ~P A ) ) | 
						
							| 50 | 49 | ralrimiva |  |-  ( A e. _om -> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) | 
						
							| 51 |  | f1fun |  |-  ( F : ( ~P _om i^i Fin ) -1-1-> _om -> Fun F ) | 
						
							| 52 | 2 51 | ax-mp |  |-  Fun F | 
						
							| 53 |  | f1dm |  |-  ( F : ( ~P _om i^i Fin ) -1-1-> _om -> dom F = ( ~P _om i^i Fin ) ) | 
						
							| 54 | 2 53 | ax-mp |  |-  dom F = ( ~P _om i^i Fin ) | 
						
							| 55 | 3 54 | sseqtrrdi |  |-  ( A e. _om -> ~P A C_ dom F ) | 
						
							| 56 |  | funimass4 |  |-  ( ( Fun F /\ ~P A C_ dom F ) -> ( ( F " ~P A ) C_ ( card ` ~P A ) <-> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) ) | 
						
							| 57 | 52 55 56 | sylancr |  |-  ( A e. _om -> ( ( F " ~P A ) C_ ( card ` ~P A ) <-> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) ) | 
						
							| 58 | 50 57 | mpbird |  |-  ( A e. _om -> ( F " ~P A ) C_ ( card ` ~P A ) ) | 
						
							| 59 |  | sspss |  |-  ( ( F " ~P A ) C_ ( card ` ~P A ) <-> ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) ) | 
						
							| 60 | 58 59 | sylib |  |-  ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) ) | 
						
							| 61 |  | orel1 |  |-  ( -. ( F " ~P A ) C. ( card ` ~P A ) -> ( ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) -> ( F " ~P A ) = ( card ` ~P A ) ) ) | 
						
							| 62 | 26 60 61 | sylc |  |-  ( A e. _om -> ( F " ~P A ) = ( card ` ~P A ) ) |