Metamath Proof Explorer


Theorem ackbij1lem1

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem1
|- ( -. A e. B -> ( B i^i suc A ) = ( B i^i A ) )

Proof

Step Hyp Ref Expression
1 df-suc
 |-  suc A = ( A u. { A } )
2 1 ineq2i
 |-  ( B i^i suc A ) = ( B i^i ( A u. { A } ) )
3 indi
 |-  ( B i^i ( A u. { A } ) ) = ( ( B i^i A ) u. ( B i^i { A } ) )
4 2 3 eqtri
 |-  ( B i^i suc A ) = ( ( B i^i A ) u. ( B i^i { A } ) )
5 disjsn
 |-  ( ( B i^i { A } ) = (/) <-> -. A e. B )
6 5 biimpri
 |-  ( -. A e. B -> ( B i^i { A } ) = (/) )
7 6 uneq2d
 |-  ( -. A e. B -> ( ( B i^i A ) u. ( B i^i { A } ) ) = ( ( B i^i A ) u. (/) ) )
8 un0
 |-  ( ( B i^i A ) u. (/) ) = ( B i^i A )
9 7 8 eqtrdi
 |-  ( -. A e. B -> ( ( B i^i A ) u. ( B i^i { A } ) ) = ( B i^i A ) )
10 4 9 syl5eq
 |-  ( -. A e. B -> ( B i^i suc A ) = ( B i^i A ) )