| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 |  | ssexg |  |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. _V ) | 
						
							| 3 |  | elinel1 |  |-  ( A e. ( ~P _om i^i Fin ) -> A e. ~P _om ) | 
						
							| 4 | 3 | elpwid |  |-  ( A e. ( ~P _om i^i Fin ) -> A C_ _om ) | 
						
							| 5 |  | sstr |  |-  ( ( B C_ A /\ A C_ _om ) -> B C_ _om ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B C_ _om ) | 
						
							| 7 | 2 6 | elpwd |  |-  ( ( B C_ A /\ A e. ( ~P _om i^i Fin ) ) -> B e. ~P _om ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ~P _om ) | 
						
							| 9 |  | elinel2 |  |-  ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) | 
						
							| 10 |  | ssfi |  |-  ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. Fin ) | 
						
							| 12 | 8 11 | elind |  |-  ( ( A e. ( ~P _om i^i Fin ) /\ B C_ A ) -> B e. ( ~P _om i^i Fin ) ) |