| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 | 1 | ackbij1lem10 |  |-  F : ( ~P _om i^i Fin ) --> _om | 
						
							| 3 |  | peano1 |  |-  (/) e. _om | 
						
							| 4 | 2 3 | f0cli |  |-  ( F ` (/) ) e. _om | 
						
							| 5 |  | nna0 |  |-  ( ( F ` (/) ) e. _om -> ( ( F ` (/) ) +o (/) ) = ( F ` (/) ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( F ` (/) ) +o (/) ) = ( F ` (/) ) | 
						
							| 7 |  | un0 |  |-  ( (/) u. (/) ) = (/) | 
						
							| 8 | 7 | fveq2i |  |-  ( F ` ( (/) u. (/) ) ) = ( F ` (/) ) | 
						
							| 9 |  | ackbij1lem3 |  |-  ( (/) e. _om -> (/) e. ( ~P _om i^i Fin ) ) | 
						
							| 10 | 3 9 | ax-mp |  |-  (/) e. ( ~P _om i^i Fin ) | 
						
							| 11 |  | in0 |  |-  ( (/) i^i (/) ) = (/) | 
						
							| 12 | 1 | ackbij1lem9 |  |-  ( ( (/) e. ( ~P _om i^i Fin ) /\ (/) e. ( ~P _om i^i Fin ) /\ ( (/) i^i (/) ) = (/) ) -> ( F ` ( (/) u. (/) ) ) = ( ( F ` (/) ) +o ( F ` (/) ) ) ) | 
						
							| 13 | 10 10 11 12 | mp3an |  |-  ( F ` ( (/) u. (/) ) ) = ( ( F ` (/) ) +o ( F ` (/) ) ) | 
						
							| 14 | 6 8 13 | 3eqtr2ri |  |-  ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) | 
						
							| 15 |  | nnacan |  |-  ( ( ( F ` (/) ) e. _om /\ ( F ` (/) ) e. _om /\ (/) e. _om ) -> ( ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) <-> ( F ` (/) ) = (/) ) ) | 
						
							| 16 | 4 4 3 15 | mp3an |  |-  ( ( ( F ` (/) ) +o ( F ` (/) ) ) = ( ( F ` (/) ) +o (/) ) <-> ( F ` (/) ) = (/) ) | 
						
							| 17 | 14 16 | mpbi |  |-  ( F ` (/) ) = (/) |