Metamath Proof Explorer


Theorem ackbij1lem17

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
Assertion ackbij1lem17
|- F : ( ~P _om i^i Fin ) -1-1-> _om

Proof

Step Hyp Ref Expression
1 ackbij.f
 |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
2 1 ackbij1lem10
 |-  F : ( ~P _om i^i Fin ) --> _om
3 1 ackbij1lem16
 |-  ( ( a e. ( ~P _om i^i Fin ) /\ b e. ( ~P _om i^i Fin ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) )
4 3 rgen2
 |-  A. a e. ( ~P _om i^i Fin ) A. b e. ( ~P _om i^i Fin ) ( ( F ` a ) = ( F ` b ) -> a = b )
5 dff13
 |-  ( F : ( ~P _om i^i Fin ) -1-1-> _om <-> ( F : ( ~P _om i^i Fin ) --> _om /\ A. a e. ( ~P _om i^i Fin ) A. b e. ( ~P _om i^i Fin ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) )
6 2 4 5 mpbir2an
 |-  F : ( ~P _om i^i Fin ) -1-1-> _om