Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
2 |
|
difss |
|- ( A \ |^| ( _om \ A ) ) C_ A |
3 |
1
|
ackbij1lem11 |
|- ( ( A e. ( ~P _om i^i Fin ) /\ ( A \ |^| ( _om \ A ) ) C_ A ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
4 |
2 3
|
mpan2 |
|- ( A e. ( ~P _om i^i Fin ) -> ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) ) |
5 |
|
difss |
|- ( _om \ A ) C_ _om |
6 |
|
omsson |
|- _om C_ On |
7 |
5 6
|
sstri |
|- ( _om \ A ) C_ On |
8 |
|
ominf |
|- -. _om e. Fin |
9 |
|
elinel2 |
|- ( A e. ( ~P _om i^i Fin ) -> A e. Fin ) |
10 |
|
difinf |
|- ( ( -. _om e. Fin /\ A e. Fin ) -> -. ( _om \ A ) e. Fin ) |
11 |
8 9 10
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> -. ( _om \ A ) e. Fin ) |
12 |
|
0fin |
|- (/) e. Fin |
13 |
|
eleq1 |
|- ( ( _om \ A ) = (/) -> ( ( _om \ A ) e. Fin <-> (/) e. Fin ) ) |
14 |
12 13
|
mpbiri |
|- ( ( _om \ A ) = (/) -> ( _om \ A ) e. Fin ) |
15 |
14
|
necon3bi |
|- ( -. ( _om \ A ) e. Fin -> ( _om \ A ) =/= (/) ) |
16 |
11 15
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( _om \ A ) =/= (/) ) |
17 |
|
onint |
|- ( ( ( _om \ A ) C_ On /\ ( _om \ A ) =/= (/) ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
18 |
7 16 17
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( _om \ A ) ) |
19 |
18
|
eldifad |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. _om ) |
20 |
|
ackbij1lem4 |
|- ( |^| ( _om \ A ) e. _om -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
21 |
19 20
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) |
22 |
|
ackbij1lem6 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
23 |
4 21 22
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) ) |
24 |
18
|
eldifbd |
|- ( A e. ( ~P _om i^i Fin ) -> -. |^| ( _om \ A ) e. A ) |
25 |
|
disjsn |
|- ( ( A i^i { |^| ( _om \ A ) } ) = (/) <-> -. |^| ( _om \ A ) e. A ) |
26 |
24 25
|
sylibr |
|- ( A e. ( ~P _om i^i Fin ) -> ( A i^i { |^| ( _om \ A ) } ) = (/) ) |
27 |
|
ssdisj |
|- ( ( ( A \ |^| ( _om \ A ) ) C_ A /\ ( A i^i { |^| ( _om \ A ) } ) = (/) ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
28 |
2 26 27
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) |
29 |
1
|
ackbij1lem9 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ { |^| ( _om \ A ) } e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i { |^| ( _om \ A ) } ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
30 |
4 21 28 29
|
syl3anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) ) |
31 |
1
|
ackbij1lem14 |
|- ( |^| ( _om \ A ) e. _om -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
32 |
19 31
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` { |^| ( _om \ A ) } ) = suc ( F ` |^| ( _om \ A ) ) ) |
33 |
32
|
oveq2d |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` { |^| ( _om \ A ) } ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) ) |
34 |
1
|
ackbij1lem10 |
|- F : ( ~P _om i^i Fin ) --> _om |
35 |
34
|
ffvelrni |
|- ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
36 |
4 35
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om ) |
37 |
|
ackbij1lem3 |
|- ( |^| ( _om \ A ) e. _om -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
38 |
19 37
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) e. ( ~P _om i^i Fin ) ) |
39 |
34
|
ffvelrni |
|- ( |^| ( _om \ A ) e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
40 |
38 39
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` |^| ( _om \ A ) ) e. _om ) |
41 |
|
nnasuc |
|- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) e. _om /\ ( F ` |^| ( _om \ A ) ) e. _om ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
42 |
36 40 41
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
43 |
|
disjdifr |
|- ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) |
44 |
43
|
a1i |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) |
45 |
1
|
ackbij1lem9 |
|- ( ( ( A \ |^| ( _om \ A ) ) e. ( ~P _om i^i Fin ) /\ |^| ( _om \ A ) e. ( ~P _om i^i Fin ) /\ ( ( A \ |^| ( _om \ A ) ) i^i |^| ( _om \ A ) ) = (/) ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
46 |
4 38 44 45
|
syl3anc |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) ) |
47 |
|
uncom |
|- ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) |
48 |
|
onnmin |
|- ( ( ( _om \ A ) C_ On /\ a e. ( _om \ A ) ) -> -. a e. |^| ( _om \ A ) ) |
49 |
7 48
|
mpan |
|- ( a e. ( _om \ A ) -> -. a e. |^| ( _om \ A ) ) |
50 |
49
|
con2i |
|- ( a e. |^| ( _om \ A ) -> -. a e. ( _om \ A ) ) |
51 |
50
|
adantl |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> -. a e. ( _om \ A ) ) |
52 |
|
ordom |
|- Ord _om |
53 |
|
ordelss |
|- ( ( Ord _om /\ |^| ( _om \ A ) e. _om ) -> |^| ( _om \ A ) C_ _om ) |
54 |
52 19 53
|
sylancr |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ _om ) |
55 |
54
|
sselda |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. _om ) |
56 |
|
eldif |
|- ( a e. ( _om \ A ) <-> ( a e. _om /\ -. a e. A ) ) |
57 |
56
|
simplbi2 |
|- ( a e. _om -> ( -. a e. A -> a e. ( _om \ A ) ) ) |
58 |
57
|
orrd |
|- ( a e. _om -> ( a e. A \/ a e. ( _om \ A ) ) ) |
59 |
58
|
orcomd |
|- ( a e. _om -> ( a e. ( _om \ A ) \/ a e. A ) ) |
60 |
55 59
|
syl |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> ( a e. ( _om \ A ) \/ a e. A ) ) |
61 |
|
orel1 |
|- ( -. a e. ( _om \ A ) -> ( ( a e. ( _om \ A ) \/ a e. A ) -> a e. A ) ) |
62 |
51 60 61
|
sylc |
|- ( ( A e. ( ~P _om i^i Fin ) /\ a e. |^| ( _om \ A ) ) -> a e. A ) |
63 |
62
|
ex |
|- ( A e. ( ~P _om i^i Fin ) -> ( a e. |^| ( _om \ A ) -> a e. A ) ) |
64 |
63
|
ssrdv |
|- ( A e. ( ~P _om i^i Fin ) -> |^| ( _om \ A ) C_ A ) |
65 |
|
undif |
|- ( |^| ( _om \ A ) C_ A <-> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
66 |
64 65
|
sylib |
|- ( A e. ( ~P _om i^i Fin ) -> ( |^| ( _om \ A ) u. ( A \ |^| ( _om \ A ) ) ) = A ) |
67 |
47 66
|
eqtrid |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) = A ) |
68 |
67
|
fveq2d |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. |^| ( _om \ A ) ) ) = ( F ` A ) ) |
69 |
46 68
|
eqtr3d |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) ) |
70 |
|
suceq |
|- ( ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = ( F ` A ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
71 |
69 70
|
syl |
|- ( A e. ( ~P _om i^i Fin ) -> suc ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
72 |
42 71
|
eqtrd |
|- ( A e. ( ~P _om i^i Fin ) -> ( ( F ` ( A \ |^| ( _om \ A ) ) ) +o suc ( F ` |^| ( _om \ A ) ) ) = suc ( F ` A ) ) |
73 |
30 33 72
|
3eqtrd |
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) |
74 |
|
fveqeq2 |
|- ( b = ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) -> ( ( F ` b ) = suc ( F ` A ) <-> ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) ) |
75 |
74
|
rspcev |
|- ( ( ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) e. ( ~P _om i^i Fin ) /\ ( F ` ( ( A \ |^| ( _om \ A ) ) u. { |^| ( _om \ A ) } ) ) = suc ( F ` A ) ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |
76 |
23 73 75
|
syl2anc |
|- ( A e. ( ~P _om i^i Fin ) -> E. b e. ( ~P _om i^i Fin ) ( F ` b ) = suc ( F ` A ) ) |