Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ackbij1lem3 | |- ( A e. _om -> A e. ( ~P _om i^i Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom | |- Ord _om |
|
2 | ordelss | |- ( ( Ord _om /\ A e. _om ) -> A C_ _om ) |
|
3 | 1 2 | mpan | |- ( A e. _om -> A C_ _om ) |
4 | elpwg | |- ( A e. _om -> ( A e. ~P _om <-> A C_ _om ) ) |
|
5 | 3 4 | mpbird | |- ( A e. _om -> A e. ~P _om ) |
6 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
7 | 5 6 | elind | |- ( A e. _om -> A e. ( ~P _om i^i Fin ) ) |