Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem7 | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | iuneq1 | |- ( x = A -> U_ y e. x ( { y } X. ~P y ) = U_ y e. A ( { y } X. ~P y ) ) |
|
| 3 | 2 | fveq2d | |- ( x = A -> ( card ` U_ y e. x ( { y } X. ~P y ) ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |
| 4 | fvex | |- ( card ` U_ y e. A ( { y } X. ~P y ) ) e. _V |
|
| 5 | 3 1 4 | fvmpt | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |