Metamath Proof Explorer


Theorem ackbij1lem7

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Hypothesis ackbij.f
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
Assertion ackbij1lem7
|- ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) )

Proof

Step Hyp Ref Expression
1 ackbij.f
 |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) )
2 iuneq1
 |-  ( x = A -> U_ y e. x ( { y } X. ~P y ) = U_ y e. A ( { y } X. ~P y ) )
3 2 fveq2d
 |-  ( x = A -> ( card ` U_ y e. x ( { y } X. ~P y ) ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) )
4 fvex
 |-  ( card ` U_ y e. A ( { y } X. ~P y ) ) e. _V
5 3 1 4 fvmpt
 |-  ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) )