Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
Assertion | ackbij1lem7 | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
2 | iuneq1 | |- ( x = A -> U_ y e. x ( { y } X. ~P y ) = U_ y e. A ( { y } X. ~P y ) ) |
|
3 | 2 | fveq2d | |- ( x = A -> ( card ` U_ y e. x ( { y } X. ~P y ) ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |
4 | fvex | |- ( card ` U_ y e. A ( { y } X. ~P y ) ) e. _V |
|
5 | 3 1 4 | fvmpt | |- ( A e. ( ~P _om i^i Fin ) -> ( F ` A ) = ( card ` U_ y e. A ( { y } X. ~P y ) ) ) |