| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 |  | sneq |  |-  ( a = A -> { a } = { A } ) | 
						
							| 3 | 2 | fveq2d |  |-  ( a = A -> ( F ` { a } ) = ( F ` { A } ) ) | 
						
							| 4 |  | pweq |  |-  ( a = A -> ~P a = ~P A ) | 
						
							| 5 | 4 | fveq2d |  |-  ( a = A -> ( card ` ~P a ) = ( card ` ~P A ) ) | 
						
							| 6 | 3 5 | eqeq12d |  |-  ( a = A -> ( ( F ` { a } ) = ( card ` ~P a ) <-> ( F ` { A } ) = ( card ` ~P A ) ) ) | 
						
							| 7 |  | ackbij1lem4 |  |-  ( a e. _om -> { a } e. ( ~P _om i^i Fin ) ) | 
						
							| 8 | 1 | ackbij1lem7 |  |-  ( { a } e. ( ~P _om i^i Fin ) -> ( F ` { a } ) = ( card ` U_ y e. { a } ( { y } X. ~P y ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( a e. _om -> ( F ` { a } ) = ( card ` U_ y e. { a } ( { y } X. ~P y ) ) ) | 
						
							| 10 |  | vex |  |-  a e. _V | 
						
							| 11 |  | sneq |  |-  ( y = a -> { y } = { a } ) | 
						
							| 12 |  | pweq |  |-  ( y = a -> ~P y = ~P a ) | 
						
							| 13 | 11 12 | xpeq12d |  |-  ( y = a -> ( { y } X. ~P y ) = ( { a } X. ~P a ) ) | 
						
							| 14 | 10 13 | iunxsn |  |-  U_ y e. { a } ( { y } X. ~P y ) = ( { a } X. ~P a ) | 
						
							| 15 | 14 | fveq2i |  |-  ( card ` U_ y e. { a } ( { y } X. ~P y ) ) = ( card ` ( { a } X. ~P a ) ) | 
						
							| 16 |  | vpwex |  |-  ~P a e. _V | 
						
							| 17 |  | xpsnen2g |  |-  ( ( a e. _V /\ ~P a e. _V ) -> ( { a } X. ~P a ) ~~ ~P a ) | 
						
							| 18 | 10 16 17 | mp2an |  |-  ( { a } X. ~P a ) ~~ ~P a | 
						
							| 19 |  | carden2b |  |-  ( ( { a } X. ~P a ) ~~ ~P a -> ( card ` ( { a } X. ~P a ) ) = ( card ` ~P a ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( card ` ( { a } X. ~P a ) ) = ( card ` ~P a ) | 
						
							| 21 | 15 20 | eqtri |  |-  ( card ` U_ y e. { a } ( { y } X. ~P y ) ) = ( card ` ~P a ) | 
						
							| 22 | 9 21 | eqtrdi |  |-  ( a e. _om -> ( F ` { a } ) = ( card ` ~P a ) ) | 
						
							| 23 | 6 22 | vtoclga |  |-  ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |