Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
2 |
|
ackbij.g |
|- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
3 |
|
ackbij.h |
|- H = U. ( rec ( G , (/) ) " _om ) |
4 |
|
fveq2 |
|- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
5 |
|
fvex |
|- ( rec ( G , (/) ) ` a ) e. _V |
6 |
4 5
|
f1iun |
|- ( A. a e. _om ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om /\ A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) -> U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om ) |
7 |
1 2
|
ackbij2lem2 |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) ) |
8 |
|
f1of1 |
|- ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) ) |
9 |
7 8
|
syl |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) ) |
10 |
|
ordom |
|- Ord _om |
11 |
|
r1fin |
|- ( a e. _om -> ( R1 ` a ) e. Fin ) |
12 |
|
ficardom |
|- ( ( R1 ` a ) e. Fin -> ( card ` ( R1 ` a ) ) e. _om ) |
13 |
11 12
|
syl |
|- ( a e. _om -> ( card ` ( R1 ` a ) ) e. _om ) |
14 |
|
ordelss |
|- ( ( Ord _om /\ ( card ` ( R1 ` a ) ) e. _om ) -> ( card ` ( R1 ` a ) ) C_ _om ) |
15 |
10 13 14
|
sylancr |
|- ( a e. _om -> ( card ` ( R1 ` a ) ) C_ _om ) |
16 |
|
f1ss |
|- ( ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> ( card ` ( R1 ` a ) ) /\ ( card ` ( R1 ` a ) ) C_ _om ) -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om ) |
17 |
9 15 16
|
syl2anc |
|- ( a e. _om -> ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om ) |
18 |
|
nnord |
|- ( a e. _om -> Ord a ) |
19 |
|
nnord |
|- ( b e. _om -> Ord b ) |
20 |
|
ordtri2or2 |
|- ( ( Ord a /\ Ord b ) -> ( a C_ b \/ b C_ a ) ) |
21 |
18 19 20
|
syl2an |
|- ( ( a e. _om /\ b e. _om ) -> ( a C_ b \/ b C_ a ) ) |
22 |
1 2
|
ackbij2lem4 |
|- ( ( ( b e. _om /\ a e. _om ) /\ a C_ b ) -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) |
23 |
22
|
ex |
|- ( ( b e. _om /\ a e. _om ) -> ( a C_ b -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) ) |
24 |
23
|
ancoms |
|- ( ( a e. _om /\ b e. _om ) -> ( a C_ b -> ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) ) ) |
25 |
1 2
|
ackbij2lem4 |
|- ( ( ( a e. _om /\ b e. _om ) /\ b C_ a ) -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) |
26 |
25
|
ex |
|- ( ( a e. _om /\ b e. _om ) -> ( b C_ a -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
27 |
24 26
|
orim12d |
|- ( ( a e. _om /\ b e. _om ) -> ( ( a C_ b \/ b C_ a ) -> ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) ) |
28 |
21 27
|
mpd |
|- ( ( a e. _om /\ b e. _om ) -> ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
29 |
28
|
ralrimiva |
|- ( a e. _om -> A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) |
30 |
17 29
|
jca |
|- ( a e. _om -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-> _om /\ A. b e. _om ( ( rec ( G , (/) ) ` a ) C_ ( rec ( G , (/) ) ` b ) \/ ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` a ) ) ) ) |
31 |
6 30
|
mprg |
|- U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om |
32 |
|
rdgfun |
|- Fun rec ( G , (/) ) |
33 |
|
funiunfv |
|- ( Fun rec ( G , (/) ) -> U_ a e. _om ( rec ( G , (/) ) ` a ) = U. ( rec ( G , (/) ) " _om ) ) |
34 |
33
|
eqcomd |
|- ( Fun rec ( G , (/) ) -> U. ( rec ( G , (/) ) " _om ) = U_ a e. _om ( rec ( G , (/) ) ` a ) ) |
35 |
|
f1eq1 |
|- ( U. ( rec ( G , (/) ) " _om ) = U_ a e. _om ( rec ( G , (/) ) ` a ) -> ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) ) |
36 |
32 34 35
|
mp2b |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) |
37 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
38 |
37
|
simpli |
|- Fun R1 |
39 |
|
funiunfv |
|- ( Fun R1 -> U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) ) |
40 |
|
f1eq2 |
|- ( U_ a e. _om ( R1 ` a ) = U. ( R1 " _om ) -> ( U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) ) |
41 |
38 39 40
|
mp2b |
|- ( U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U. ( R1 " _om ) -1-1-> _om ) |
42 |
36 41
|
bitr4i |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om <-> U_ a e. _om ( rec ( G , (/) ) ` a ) : U_ a e. _om ( R1 ` a ) -1-1-> _om ) |
43 |
31 42
|
mpbir |
|- U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om |
44 |
|
rnuni |
|- ran U. ( rec ( G , (/) ) " _om ) = U_ a e. ( rec ( G , (/) ) " _om ) ran a |
45 |
|
eliun |
|- ( b e. U_ a e. ( rec ( G , (/) ) " _om ) ran a <-> E. a e. ( rec ( G , (/) ) " _om ) b e. ran a ) |
46 |
|
df-rex |
|- ( E. a e. ( rec ( G , (/) ) " _om ) b e. ran a <-> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
47 |
|
funfn |
|- ( Fun rec ( G , (/) ) <-> rec ( G , (/) ) Fn dom rec ( G , (/) ) ) |
48 |
32 47
|
mpbi |
|- rec ( G , (/) ) Fn dom rec ( G , (/) ) |
49 |
|
rdgdmlim |
|- Lim dom rec ( G , (/) ) |
50 |
|
limomss |
|- ( Lim dom rec ( G , (/) ) -> _om C_ dom rec ( G , (/) ) ) |
51 |
49 50
|
ax-mp |
|- _om C_ dom rec ( G , (/) ) |
52 |
|
fvelimab |
|- ( ( rec ( G , (/) ) Fn dom rec ( G , (/) ) /\ _om C_ dom rec ( G , (/) ) ) -> ( a e. ( rec ( G , (/) ) " _om ) <-> E. c e. _om ( rec ( G , (/) ) ` c ) = a ) ) |
53 |
48 51 52
|
mp2an |
|- ( a e. ( rec ( G , (/) ) " _om ) <-> E. c e. _om ( rec ( G , (/) ) ` c ) = a ) |
54 |
1 2
|
ackbij2lem2 |
|- ( c e. _om -> ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -1-1-onto-> ( card ` ( R1 ` c ) ) ) |
55 |
|
f1ofo |
|- ( ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -1-1-onto-> ( card ` ( R1 ` c ) ) -> ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -onto-> ( card ` ( R1 ` c ) ) ) |
56 |
|
forn |
|- ( ( rec ( G , (/) ) ` c ) : ( R1 ` c ) -onto-> ( card ` ( R1 ` c ) ) -> ran ( rec ( G , (/) ) ` c ) = ( card ` ( R1 ` c ) ) ) |
57 |
54 55 56
|
3syl |
|- ( c e. _om -> ran ( rec ( G , (/) ) ` c ) = ( card ` ( R1 ` c ) ) ) |
58 |
|
r1fin |
|- ( c e. _om -> ( R1 ` c ) e. Fin ) |
59 |
|
ficardom |
|- ( ( R1 ` c ) e. Fin -> ( card ` ( R1 ` c ) ) e. _om ) |
60 |
58 59
|
syl |
|- ( c e. _om -> ( card ` ( R1 ` c ) ) e. _om ) |
61 |
|
ordelss |
|- ( ( Ord _om /\ ( card ` ( R1 ` c ) ) e. _om ) -> ( card ` ( R1 ` c ) ) C_ _om ) |
62 |
10 60 61
|
sylancr |
|- ( c e. _om -> ( card ` ( R1 ` c ) ) C_ _om ) |
63 |
57 62
|
eqsstrd |
|- ( c e. _om -> ran ( rec ( G , (/) ) ` c ) C_ _om ) |
64 |
|
rneq |
|- ( ( rec ( G , (/) ) ` c ) = a -> ran ( rec ( G , (/) ) ` c ) = ran a ) |
65 |
64
|
sseq1d |
|- ( ( rec ( G , (/) ) ` c ) = a -> ( ran ( rec ( G , (/) ) ` c ) C_ _om <-> ran a C_ _om ) ) |
66 |
63 65
|
syl5ibcom |
|- ( c e. _om -> ( ( rec ( G , (/) ) ` c ) = a -> ran a C_ _om ) ) |
67 |
66
|
rexlimiv |
|- ( E. c e. _om ( rec ( G , (/) ) ` c ) = a -> ran a C_ _om ) |
68 |
53 67
|
sylbi |
|- ( a e. ( rec ( G , (/) ) " _om ) -> ran a C_ _om ) |
69 |
68
|
sselda |
|- ( ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) -> b e. _om ) |
70 |
69
|
exlimiv |
|- ( E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) -> b e. _om ) |
71 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
72 |
|
fnfvima |
|- ( ( rec ( G , (/) ) Fn dom rec ( G , (/) ) /\ _om C_ dom rec ( G , (/) ) /\ suc b e. _om ) -> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) |
73 |
48 51 71 72
|
mp3an12i |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) |
74 |
|
vex |
|- b e. _V |
75 |
|
cardnn |
|- ( suc b e. _om -> ( card ` suc b ) = suc b ) |
76 |
|
fvex |
|- ( R1 ` suc b ) e. _V |
77 |
37
|
simpri |
|- Lim dom R1 |
78 |
|
limomss |
|- ( Lim dom R1 -> _om C_ dom R1 ) |
79 |
77 78
|
ax-mp |
|- _om C_ dom R1 |
80 |
79
|
sseli |
|- ( suc b e. _om -> suc b e. dom R1 ) |
81 |
|
onssr1 |
|- ( suc b e. dom R1 -> suc b C_ ( R1 ` suc b ) ) |
82 |
80 81
|
syl |
|- ( suc b e. _om -> suc b C_ ( R1 ` suc b ) ) |
83 |
|
ssdomg |
|- ( ( R1 ` suc b ) e. _V -> ( suc b C_ ( R1 ` suc b ) -> suc b ~<_ ( R1 ` suc b ) ) ) |
84 |
76 82 83
|
mpsyl |
|- ( suc b e. _om -> suc b ~<_ ( R1 ` suc b ) ) |
85 |
|
nnon |
|- ( suc b e. _om -> suc b e. On ) |
86 |
|
onenon |
|- ( suc b e. On -> suc b e. dom card ) |
87 |
85 86
|
syl |
|- ( suc b e. _om -> suc b e. dom card ) |
88 |
|
r1fin |
|- ( suc b e. _om -> ( R1 ` suc b ) e. Fin ) |
89 |
|
finnum |
|- ( ( R1 ` suc b ) e. Fin -> ( R1 ` suc b ) e. dom card ) |
90 |
88 89
|
syl |
|- ( suc b e. _om -> ( R1 ` suc b ) e. dom card ) |
91 |
|
carddom2 |
|- ( ( suc b e. dom card /\ ( R1 ` suc b ) e. dom card ) -> ( ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) <-> suc b ~<_ ( R1 ` suc b ) ) ) |
92 |
87 90 91
|
syl2anc |
|- ( suc b e. _om -> ( ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) <-> suc b ~<_ ( R1 ` suc b ) ) ) |
93 |
84 92
|
mpbird |
|- ( suc b e. _om -> ( card ` suc b ) C_ ( card ` ( R1 ` suc b ) ) ) |
94 |
75 93
|
eqsstrrd |
|- ( suc b e. _om -> suc b C_ ( card ` ( R1 ` suc b ) ) ) |
95 |
71 94
|
syl |
|- ( b e. _om -> suc b C_ ( card ` ( R1 ` suc b ) ) ) |
96 |
|
sucssel |
|- ( b e. _V -> ( suc b C_ ( card ` ( R1 ` suc b ) ) -> b e. ( card ` ( R1 ` suc b ) ) ) ) |
97 |
74 95 96
|
mpsyl |
|- ( b e. _om -> b e. ( card ` ( R1 ` suc b ) ) ) |
98 |
1 2
|
ackbij2lem2 |
|- ( suc b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
99 |
|
f1ofo |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -onto-> ( card ` ( R1 ` suc b ) ) ) |
100 |
|
forn |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -onto-> ( card ` ( R1 ` suc b ) ) -> ran ( rec ( G , (/) ) ` suc b ) = ( card ` ( R1 ` suc b ) ) ) |
101 |
71 98 99 100
|
4syl |
|- ( b e. _om -> ran ( rec ( G , (/) ) ` suc b ) = ( card ` ( R1 ` suc b ) ) ) |
102 |
97 101
|
eleqtrrd |
|- ( b e. _om -> b e. ran ( rec ( G , (/) ) ` suc b ) ) |
103 |
|
fvex |
|- ( rec ( G , (/) ) ` suc b ) e. _V |
104 |
|
eleq1 |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( a e. ( rec ( G , (/) ) " _om ) <-> ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) ) ) |
105 |
|
rneq |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ran a = ran ( rec ( G , (/) ) ` suc b ) ) |
106 |
105
|
eleq2d |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( b e. ran a <-> b e. ran ( rec ( G , (/) ) ` suc b ) ) ) |
107 |
104 106
|
anbi12d |
|- ( a = ( rec ( G , (/) ) ` suc b ) -> ( ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) <-> ( ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) /\ b e. ran ( rec ( G , (/) ) ` suc b ) ) ) ) |
108 |
103 107
|
spcev |
|- ( ( ( rec ( G , (/) ) ` suc b ) e. ( rec ( G , (/) ) " _om ) /\ b e. ran ( rec ( G , (/) ) ` suc b ) ) -> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
109 |
73 102 108
|
syl2anc |
|- ( b e. _om -> E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) ) |
110 |
70 109
|
impbii |
|- ( E. a ( a e. ( rec ( G , (/) ) " _om ) /\ b e. ran a ) <-> b e. _om ) |
111 |
45 46 110
|
3bitri |
|- ( b e. U_ a e. ( rec ( G , (/) ) " _om ) ran a <-> b e. _om ) |
112 |
111
|
eqriv |
|- U_ a e. ( rec ( G , (/) ) " _om ) ran a = _om |
113 |
44 112
|
eqtri |
|- ran U. ( rec ( G , (/) ) " _om ) = _om |
114 |
|
dff1o5 |
|- ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om <-> ( U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-> _om /\ ran U. ( rec ( G , (/) ) " _om ) = _om ) ) |
115 |
43 113 114
|
mpbir2an |
|- U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om |
116 |
|
f1oeq1 |
|- ( H = U. ( rec ( G , (/) ) " _om ) -> ( H : U. ( R1 " _om ) -1-1-onto-> _om <-> U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om ) ) |
117 |
3 116
|
ax-mp |
|- ( H : U. ( R1 " _om ) -1-1-onto-> _om <-> U. ( rec ( G , (/) ) " _om ) : U. ( R1 " _om ) -1-1-onto-> _om ) |
118 |
115 117
|
mpbir |
|- H : U. ( R1 " _om ) -1-1-onto-> _om |