| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordom |  |-  Ord _om | 
						
							| 2 |  | ordelss |  |-  ( ( Ord _om /\ A e. _om ) -> A C_ _om ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. _om -> A C_ _om ) | 
						
							| 4 | 3 | sspwd |  |-  ( A e. _om -> ~P A C_ ~P _om ) | 
						
							| 5 | 4 | sselda |  |-  ( ( A e. _om /\ a e. ~P A ) -> a e. ~P _om ) | 
						
							| 6 |  | nnfi |  |-  ( A e. _om -> A e. Fin ) | 
						
							| 7 |  | elpwi |  |-  ( a e. ~P A -> a C_ A ) | 
						
							| 8 |  | ssfi |  |-  ( ( A e. Fin /\ a C_ A ) -> a e. Fin ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( A e. _om /\ a e. ~P A ) -> a e. Fin ) | 
						
							| 10 | 5 9 | elind |  |-  ( ( A e. _om /\ a e. ~P A ) -> a e. ( ~P _om i^i Fin ) ) | 
						
							| 11 | 10 | ex |  |-  ( A e. _om -> ( a e. ~P A -> a e. ( ~P _om i^i Fin ) ) ) | 
						
							| 12 | 11 | ssrdv |  |-  ( A e. _om -> ~P A C_ ( ~P _om i^i Fin ) ) |