| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  |-  F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) | 
						
							| 2 |  | ackbij.g |  |-  G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( a = (/) -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` (/) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( a = (/) -> ( R1 ` a ) = ( R1 ` (/) ) ) | 
						
							| 5 |  | 2fveq3 |  |-  ( a = (/) -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` (/) ) ) ) | 
						
							| 6 | 3 4 5 | f1oeq123d |  |-  ( a = (/) -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) | 
						
							| 8 |  | fveq2 |  |-  ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) | 
						
							| 9 |  | 2fveq3 |  |-  ( a = b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` b ) ) ) | 
						
							| 10 | 7 8 9 | f1oeq123d |  |-  ( a = b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) | 
						
							| 12 |  | fveq2 |  |-  ( a = suc b -> ( R1 ` a ) = ( R1 ` suc b ) ) | 
						
							| 13 |  | 2fveq3 |  |-  ( a = suc b -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` suc b ) ) ) | 
						
							| 14 | 11 12 13 | f1oeq123d |  |-  ( a = suc b -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) | 
						
							| 16 |  | fveq2 |  |-  ( a = A -> ( R1 ` a ) = ( R1 ` A ) ) | 
						
							| 17 |  | 2fveq3 |  |-  ( a = A -> ( card ` ( R1 ` a ) ) = ( card ` ( R1 ` A ) ) ) | 
						
							| 18 | 15 16 17 | f1oeq123d |  |-  ( a = A -> ( ( rec ( G , (/) ) ` a ) : ( R1 ` a ) -1-1-onto-> ( card ` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) ) | 
						
							| 19 |  | f1o0 |  |-  (/) : (/) -1-1-onto-> (/) | 
						
							| 20 |  | 0ex |  |-  (/) e. _V | 
						
							| 21 | 20 | rdg0 |  |-  ( rec ( G , (/) ) ` (/) ) = (/) | 
						
							| 22 |  | f1oeq1 |  |-  ( ( rec ( G , (/) ) ` (/) ) = (/) -> ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) ) | 
						
							| 23 | 21 22 | ax-mp |  |-  ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) ) | 
						
							| 24 |  | r10 |  |-  ( R1 ` (/) ) = (/) | 
						
							| 25 | 24 | fveq2i |  |-  ( card ` ( R1 ` (/) ) ) = ( card ` (/) ) | 
						
							| 26 |  | card0 |  |-  ( card ` (/) ) = (/) | 
						
							| 27 | 25 26 | eqtri |  |-  ( card ` ( R1 ` (/) ) ) = (/) | 
						
							| 28 |  | f1oeq23 |  |-  ( ( ( R1 ` (/) ) = (/) /\ ( card ` ( R1 ` (/) ) ) = (/) ) -> ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) ) | 
						
							| 29 | 24 27 28 | mp2an |  |-  ( (/) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) | 
						
							| 30 | 23 29 | bitri |  |-  ( ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) <-> (/) : (/) -1-1-onto-> (/) ) | 
						
							| 31 | 19 30 | mpbir |  |-  ( rec ( G , (/) ) ` (/) ) : ( R1 ` (/) ) -1-1-onto-> ( card ` ( R1 ` (/) ) ) | 
						
							| 32 | 1 | ackbij1lem17 |  |-  F : ( ~P _om i^i Fin ) -1-1-> _om | 
						
							| 33 | 32 | a1i |  |-  ( b e. _om -> F : ( ~P _om i^i Fin ) -1-1-> _om ) | 
						
							| 34 |  | r1fin |  |-  ( b e. _om -> ( R1 ` b ) e. Fin ) | 
						
							| 35 |  | ficardom |  |-  ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) e. _om ) | 
						
							| 36 | 34 35 | syl |  |-  ( b e. _om -> ( card ` ( R1 ` b ) ) e. _om ) | 
						
							| 37 |  | ackbij2lem1 |  |-  ( ( card ` ( R1 ` b ) ) e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( b e. _om -> ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) | 
						
							| 39 |  | f1ores |  |-  ( ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ~P ( card ` ( R1 ` b ) ) C_ ( ~P _om i^i Fin ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) | 
						
							| 40 | 33 38 39 | syl2anc |  |-  ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) ) | 
						
							| 41 | 1 | ackbij1b |  |-  ( ( card ` ( R1 ` b ) ) e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) | 
						
							| 42 | 36 41 | syl |  |-  ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( card ` ( R1 ` b ) ) ) ) | 
						
							| 43 |  | ficardid |  |-  ( ( R1 ` b ) e. Fin -> ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) ) | 
						
							| 44 |  | pwen |  |-  ( ( card ` ( R1 ` b ) ) ~~ ( R1 ` b ) -> ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) ) | 
						
							| 45 |  | carden2b |  |-  ( ~P ( card ` ( R1 ` b ) ) ~~ ~P ( R1 ` b ) -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 46 | 34 43 44 45 | 4syl |  |-  ( b e. _om -> ( card ` ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 47 | 42 46 | eqtrd |  |-  ( b e. _om -> ( F " ~P ( card ` ( R1 ` b ) ) ) = ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 48 | 47 | f1oeq3d |  |-  ( b e. _om -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( F " ~P ( card ` ( R1 ` b ) ) ) <-> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) | 
						
							| 49 | 40 48 | mpbid |  |-  ( b e. _om -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 51 |  | f1opw |  |-  ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) | 
						
							| 53 |  | f1oco |  |-  ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) : ~P ( card ` ( R1 ` b ) ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) /\ ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 54 | 50 52 53 | syl2anc |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 55 |  | frsuc |  |-  ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) ) | 
						
							| 56 |  | peano2 |  |-  ( b e. _om -> suc b e. _om ) | 
						
							| 57 | 56 | fvresd |  |-  ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc b ) = ( rec ( G , (/) ) ` suc b ) ) | 
						
							| 58 |  | fvres |  |-  ( b e. _om -> ( ( rec ( G , (/) ) |` _om ) ` b ) = ( rec ( G , (/) ) ` b ) ) | 
						
							| 59 | 58 | fveq2d |  |-  ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) | 
						
							| 60 |  | fvex |  |-  ( rec ( G , (/) ) ` b ) e. _V | 
						
							| 61 |  | dmeq |  |-  ( x = ( rec ( G , (/) ) ` b ) -> dom x = dom ( rec ( G , (/) ) ` b ) ) | 
						
							| 62 | 61 | pweqd |  |-  ( x = ( rec ( G , (/) ) ` b ) -> ~P dom x = ~P dom ( rec ( G , (/) ) ` b ) ) | 
						
							| 63 |  | imaeq1 |  |-  ( x = ( rec ( G , (/) ) ` b ) -> ( x " y ) = ( ( rec ( G , (/) ) ` b ) " y ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( x = ( rec ( G , (/) ) ` b ) -> ( F ` ( x " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) | 
						
							| 65 | 62 64 | mpteq12dv |  |-  ( x = ( rec ( G , (/) ) ` b ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 66 | 60 | dmex |  |-  dom ( rec ( G , (/) ) ` b ) e. _V | 
						
							| 67 | 66 | pwex |  |-  ~P dom ( rec ( G , (/) ) ` b ) e. _V | 
						
							| 68 | 67 | mptex |  |-  ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) e. _V | 
						
							| 69 | 65 2 68 | fvmpt |  |-  ( ( rec ( G , (/) ) ` b ) e. _V -> ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 70 | 60 69 | ax-mp |  |-  ( G ` ( rec ( G , (/) ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) | 
						
							| 71 | 59 70 | eqtrdi |  |-  ( b e. _om -> ( G ` ( ( rec ( G , (/) ) |` _om ) ` b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 72 | 55 57 71 | 3eqtr3d |  |-  ( b e. _om -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 74 |  | f1odm |  |-  ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> dom ( rec ( G , (/) ) ` b ) = ( R1 ` b ) ) | 
						
							| 76 | 75 | pweqd |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ~P dom ( rec ( G , (/) ) ` b ) = ~P ( R1 ` b ) ) | 
						
							| 77 | 76 | mpteq1d |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ) | 
						
							| 78 |  | fvex |  |-  ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) e. _V | 
						
							| 79 |  | eqid |  |-  ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) | 
						
							| 80 | 78 79 | fnmpti |  |-  ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) | 
						
							| 81 | 80 | a1i |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) Fn ~P ( R1 ` b ) ) | 
						
							| 82 |  | f1ofn |  |-  ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) | 
						
							| 83 | 54 82 | syl |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) Fn ~P ( R1 ` b ) ) | 
						
							| 84 |  | f1of |  |-  ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) -1-1-onto-> ~P ( card ` ( R1 ` b ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) | 
						
							| 85 | 52 84 | syl |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) ) | 
						
							| 86 | 85 | ffvelcdmda |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) e. ~P ( card ` ( R1 ` b ) ) ) | 
						
							| 87 | 86 | fvresd |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) | 
						
							| 88 |  | imaeq2 |  |-  ( a = c -> ( ( rec ( G , (/) ) ` b ) " a ) = ( ( rec ( G , (/) ) ` b ) " c ) ) | 
						
							| 89 |  | eqid |  |-  ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) = ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) | 
						
							| 90 | 60 | imaex |  |-  ( ( rec ( G , (/) ) ` b ) " c ) e. _V | 
						
							| 91 | 88 89 90 | fvmpt |  |-  ( c e. ~P ( R1 ` b ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) = ( ( rec ( G , (/) ) ` b ) " c ) ) | 
						
							| 93 | 92 | fveq2d |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( F ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) | 
						
							| 94 | 87 93 | eqtrd |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) | 
						
							| 95 |  | fvco3 |  |-  ( ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) : ~P ( R1 ` b ) --> ~P ( card ` ( R1 ` b ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) | 
						
							| 96 | 85 95 | sylan |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) ` ( ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ` c ) ) ) | 
						
							| 97 |  | imaeq2 |  |-  ( y = c -> ( ( rec ( G , (/) ) ` b ) " y ) = ( ( rec ( G , (/) ) ` b ) " c ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( y = c -> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) | 
						
							| 99 |  | fvex |  |-  ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) e. _V | 
						
							| 100 | 98 79 99 | fvmpt |  |-  ( c e. ~P ( R1 ` b ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` b ) " c ) ) ) | 
						
							| 102 | 94 96 101 | 3eqtr4rd |  |-  ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) /\ c e. ~P ( R1 ` b ) ) -> ( ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) ` c ) = ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ` c ) ) | 
						
							| 103 | 81 83 102 | eqfnfvd |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P ( R1 ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) | 
						
							| 104 | 77 103 | eqtrd |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( y e. ~P dom ( rec ( G , (/) ) ` b ) |-> ( F ` ( ( rec ( G , (/) ) ` b ) " y ) ) ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) | 
						
							| 105 | 73 104 | eqtrd |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) ) | 
						
							| 106 |  | f1oeq1 |  |-  ( ( rec ( G , (/) ) ` suc b ) = ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) | 
						
							| 107 | 105 106 | syl |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) | 
						
							| 108 |  | nnon |  |-  ( b e. _om -> b e. On ) | 
						
							| 109 |  | r1suc |  |-  ( b e. On -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) | 
						
							| 110 | 108 109 | syl |  |-  ( b e. _om -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) | 
						
							| 111 | 110 | fveq2d |  |-  ( b e. _om -> ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) | 
						
							| 112 |  | f1oeq23 |  |-  ( ( ( R1 ` suc b ) = ~P ( R1 ` b ) /\ ( card ` ( R1 ` suc b ) ) = ( card ` ~P ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) | 
						
							| 113 | 110 111 112 | syl2anc |  |-  ( b e. _om -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) | 
						
							| 115 | 107 114 | bitrd |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) <-> ( ( F |` ~P ( card ` ( R1 ` b ) ) ) o. ( a e. ~P ( R1 ` b ) |-> ( ( rec ( G , (/) ) ` b ) " a ) ) ) : ~P ( R1 ` b ) -1-1-onto-> ( card ` ~P ( R1 ` b ) ) ) ) | 
						
							| 116 | 54 115 | mpbird |  |-  ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) | 
						
							| 117 | 116 | ex |  |-  ( b e. _om -> ( ( rec ( G , (/) ) ` b ) : ( R1 ` b ) -1-1-onto-> ( card ` ( R1 ` b ) ) -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) ) | 
						
							| 118 | 6 10 14 18 31 117 | finds |  |-  ( A e. _om -> ( rec ( G , (/) ) ` A ) : ( R1 ` A ) -1-1-onto-> ( card ` ( R1 ` A ) ) ) |