| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 2 |
|
ackbij.g |
|- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
| 3 |
|
fveq2 |
|- ( a = (/) -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` (/) ) ) |
| 4 |
|
suceq |
|- ( a = (/) -> suc a = suc (/) ) |
| 5 |
4
|
fveq2d |
|- ( a = (/) -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc (/) ) ) |
| 6 |
|
fveq2 |
|- ( a = (/) -> ( R1 ` a ) = ( R1 ` (/) ) ) |
| 7 |
5 6
|
reseq12d |
|- ( a = (/) -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) ) |
| 8 |
3 7
|
eqeq12d |
|- ( a = (/) -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` (/) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) ) ) |
| 9 |
|
fveq2 |
|- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
| 10 |
|
suceq |
|- ( a = b -> suc a = suc b ) |
| 11 |
10
|
fveq2d |
|- ( a = b -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc b ) ) |
| 12 |
|
fveq2 |
|- ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) |
| 13 |
11 12
|
reseq12d |
|- ( a = b -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 14 |
9 13
|
eqeq12d |
|- ( a = b -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ) |
| 15 |
|
fveq2 |
|- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
| 16 |
|
suceq |
|- ( a = suc b -> suc a = suc suc b ) |
| 17 |
16
|
fveq2d |
|- ( a = suc b -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc suc b ) ) |
| 18 |
|
fveq2 |
|- ( a = suc b -> ( R1 ` a ) = ( R1 ` suc b ) ) |
| 19 |
17 18
|
reseq12d |
|- ( a = suc b -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) |
| 20 |
15 19
|
eqeq12d |
|- ( a = suc b -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) ) |
| 21 |
|
fveq2 |
|- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
| 22 |
|
suceq |
|- ( a = A -> suc a = suc A ) |
| 23 |
22
|
fveq2d |
|- ( a = A -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc A ) ) |
| 24 |
|
fveq2 |
|- ( a = A -> ( R1 ` a ) = ( R1 ` A ) ) |
| 25 |
23 24
|
reseq12d |
|- ( a = A -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) |
| 26 |
21 25
|
eqeq12d |
|- ( a = A -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` A ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) ) |
| 27 |
|
res0 |
|- ( ( rec ( G , (/) ) ` suc (/) ) |` (/) ) = (/) |
| 28 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 29 |
28
|
reseq2i |
|- ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` (/) ) |
| 30 |
|
0ex |
|- (/) e. _V |
| 31 |
30
|
rdg0 |
|- ( rec ( G , (/) ) ` (/) ) = (/) |
| 32 |
27 29 31
|
3eqtr4ri |
|- ( rec ( G , (/) ) ` (/) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) |
| 33 |
|
peano2 |
|- ( b e. _om -> suc b e. _om ) |
| 34 |
1 2
|
ackbij2lem2 |
|- ( suc b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 35 |
33 34
|
syl |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 36 |
|
f1ofn |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
| 37 |
35 36
|
syl |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
| 38 |
37
|
adantr |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
| 39 |
|
peano2 |
|- ( suc b e. _om -> suc suc b e. _om ) |
| 40 |
1 2
|
ackbij2lem2 |
|- ( suc suc b e. _om -> ( rec ( G , (/) ) ` suc suc b ) : ( R1 ` suc suc b ) -1-1-onto-> ( card ` ( R1 ` suc suc b ) ) ) |
| 41 |
|
f1ofn |
|- ( ( rec ( G , (/) ) ` suc suc b ) : ( R1 ` suc suc b ) -1-1-onto-> ( card ` ( R1 ` suc suc b ) ) -> ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) ) |
| 42 |
33 39 40 41
|
4syl |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) ) |
| 43 |
|
nnon |
|- ( suc b e. _om -> suc b e. On ) |
| 44 |
33 43
|
syl |
|- ( b e. _om -> suc b e. On ) |
| 45 |
|
r1sssuc |
|- ( suc b e. On -> ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) |
| 46 |
44 45
|
syl |
|- ( b e. _om -> ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) |
| 47 |
|
fnssres |
|- ( ( ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) /\ ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
| 48 |
42 46 47
|
syl2anc |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
| 49 |
48
|
adantr |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
| 50 |
|
nnon |
|- ( b e. _om -> b e. On ) |
| 51 |
|
r1suc |
|- ( b e. On -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
| 52 |
50 51
|
syl |
|- ( b e. _om -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
| 53 |
52
|
eleq2d |
|- ( b e. _om -> ( c e. ( R1 ` suc b ) <-> c e. ~P ( R1 ` b ) ) ) |
| 54 |
53
|
biimpa |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P ( R1 ` b ) ) |
| 55 |
54
|
elpwid |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c C_ ( R1 ` b ) ) |
| 56 |
|
resima2 |
|- ( c C_ ( R1 ` b ) -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
| 57 |
55 56
|
syl |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
| 58 |
57
|
fveq2d |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 59 |
|
fvex |
|- ( rec ( G , (/) ) ` suc b ) e. _V |
| 60 |
59
|
resex |
|- ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 61 |
|
dmeq |
|- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> dom x = dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 62 |
61
|
pweqd |
|- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ~P dom x = ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 63 |
|
imaeq1 |
|- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( x " y ) = ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) |
| 64 |
63
|
fveq2d |
|- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( F ` ( x " y ) ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
| 65 |
62 64
|
mpteq12dv |
|- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ) |
| 66 |
60
|
dmex |
|- dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 67 |
66
|
pwex |
|- ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 68 |
67
|
mptex |
|- ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) e. _V |
| 69 |
65 2 68
|
fvmpt |
|- ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V -> ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ) |
| 70 |
60 69
|
ax-mp |
|- ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
| 71 |
70
|
fveq1i |
|- ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) |
| 72 |
|
r1sssuc |
|- ( b e. On -> ( R1 ` b ) C_ ( R1 ` suc b ) ) |
| 73 |
50 72
|
syl |
|- ( b e. _om -> ( R1 ` b ) C_ ( R1 ` suc b ) ) |
| 74 |
|
fnssres |
|- ( ( ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) /\ ( R1 ` b ) C_ ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) Fn ( R1 ` b ) ) |
| 75 |
37 73 74
|
syl2anc |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) Fn ( R1 ` b ) ) |
| 76 |
75
|
fndmd |
|- ( b e. _om -> dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ( R1 ` b ) ) |
| 77 |
76
|
pweqd |
|- ( b e. _om -> ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ~P ( R1 ` b ) ) |
| 78 |
77
|
adantr |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ~P ( R1 ` b ) ) |
| 79 |
54 78
|
eleqtrrd |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 80 |
|
imaeq2 |
|- ( y = c -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) = ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) |
| 81 |
80
|
fveq2d |
|- ( y = c -> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 82 |
|
eqid |
|- ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
| 83 |
|
fvex |
|- ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) e. _V |
| 84 |
81 82 83
|
fvmpt |
|- ( c e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 85 |
79 84
|
syl |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 86 |
71 85
|
eqtrid |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 87 |
|
dmeq |
|- ( x = ( rec ( G , (/) ) ` suc b ) -> dom x = dom ( rec ( G , (/) ) ` suc b ) ) |
| 88 |
87
|
pweqd |
|- ( x = ( rec ( G , (/) ) ` suc b ) -> ~P dom x = ~P dom ( rec ( G , (/) ) ` suc b ) ) |
| 89 |
|
imaeq1 |
|- ( x = ( rec ( G , (/) ) ` suc b ) -> ( x " y ) = ( ( rec ( G , (/) ) ` suc b ) " y ) ) |
| 90 |
89
|
fveq2d |
|- ( x = ( rec ( G , (/) ) ` suc b ) -> ( F ` ( x " y ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
| 91 |
88 90
|
mpteq12dv |
|- ( x = ( rec ( G , (/) ) ` suc b ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ) |
| 92 |
59
|
dmex |
|- dom ( rec ( G , (/) ) ` suc b ) e. _V |
| 93 |
92
|
pwex |
|- ~P dom ( rec ( G , (/) ) ` suc b ) e. _V |
| 94 |
93
|
mptex |
|- ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) e. _V |
| 95 |
91 2 94
|
fvmpt |
|- ( ( rec ( G , (/) ) ` suc b ) e. _V -> ( G ` ( rec ( G , (/) ) ` suc b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ) |
| 96 |
59 95
|
ax-mp |
|- ( G ` ( rec ( G , (/) ) ` suc b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
| 97 |
96
|
fveq1i |
|- ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) = ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) |
| 98 |
|
r1tr |
|- Tr ( R1 ` suc b ) |
| 99 |
98
|
a1i |
|- ( b e. _om -> Tr ( R1 ` suc b ) ) |
| 100 |
|
dftr4 |
|- ( Tr ( R1 ` suc b ) <-> ( R1 ` suc b ) C_ ~P ( R1 ` suc b ) ) |
| 101 |
99 100
|
sylib |
|- ( b e. _om -> ( R1 ` suc b ) C_ ~P ( R1 ` suc b ) ) |
| 102 |
101
|
sselda |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P ( R1 ` suc b ) ) |
| 103 |
|
f1odm |
|- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> dom ( rec ( G , (/) ) ` suc b ) = ( R1 ` suc b ) ) |
| 104 |
35 103
|
syl |
|- ( b e. _om -> dom ( rec ( G , (/) ) ` suc b ) = ( R1 ` suc b ) ) |
| 105 |
104
|
pweqd |
|- ( b e. _om -> ~P dom ( rec ( G , (/) ) ` suc b ) = ~P ( R1 ` suc b ) ) |
| 106 |
105
|
adantr |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ~P dom ( rec ( G , (/) ) ` suc b ) = ~P ( R1 ` suc b ) ) |
| 107 |
102 106
|
eleqtrrd |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P dom ( rec ( G , (/) ) ` suc b ) ) |
| 108 |
|
imaeq2 |
|- ( y = c -> ( ( rec ( G , (/) ) ` suc b ) " y ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
| 109 |
108
|
fveq2d |
|- ( y = c -> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 110 |
|
eqid |
|- ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
| 111 |
|
fvex |
|- ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) e. _V |
| 112 |
109 110 111
|
fvmpt |
|- ( c e. ~P dom ( rec ( G , (/) ) ` suc b ) -> ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 113 |
107 112
|
syl |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 114 |
97 113
|
eqtrid |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 115 |
58 86 114
|
3eqtr4d |
|- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 116 |
115
|
adantlr |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 117 |
|
fveq2 |
|- ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( G ` ( rec ( G , (/) ) ` b ) ) = ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ) |
| 118 |
117
|
fveq1d |
|- ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) = ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) ) |
| 119 |
118
|
ad2antlr |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) = ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) ) |
| 120 |
|
rdgsuc |
|- ( suc b e. On -> ( rec ( G , (/) ) ` suc suc b ) = ( G ` ( rec ( G , (/) ) ` suc b ) ) ) |
| 121 |
44 120
|
syl |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc suc b ) = ( G ` ( rec ( G , (/) ) ` suc b ) ) ) |
| 122 |
121
|
fveq1d |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 123 |
122
|
ad2antrr |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 124 |
116 119 123
|
3eqtr4rd |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 125 |
|
fvres |
|- ( c e. ( R1 ` suc b ) -> ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) = ( ( rec ( G , (/) ) ` suc suc b ) ` c ) ) |
| 126 |
125
|
adantl |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) = ( ( rec ( G , (/) ) ` suc suc b ) ` c ) ) |
| 127 |
|
rdgsuc |
|- ( b e. On -> ( rec ( G , (/) ) ` suc b ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
| 128 |
50 127
|
syl |
|- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
| 129 |
128
|
fveq1d |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 130 |
129
|
ad2antrr |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 131 |
124 126 130
|
3eqtr4rd |
|- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) ) |
| 132 |
38 49 131
|
eqfnfvd |
|- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) |
| 133 |
132
|
ex |
|- ( b e. _om -> ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) ) |
| 134 |
8 14 20 26 32 133
|
finds |
|- ( A e. _om -> ( rec ( G , (/) ) ` A ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) |
| 135 |
|
resss |
|- ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) C_ ( rec ( G , (/) ) ` suc A ) |
| 136 |
134 135
|
eqsstrdi |
|- ( A e. _om -> ( rec ( G , (/) ) ` A ) C_ ( rec ( G , (/) ) ` suc A ) ) |