| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 2 |
|
ackbij.g |
|- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
| 3 |
|
fveq2 |
|- ( a = B -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` B ) ) |
| 4 |
3
|
sseq2d |
|- ( a = B -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` B ) ) ) |
| 5 |
|
fveq2 |
|- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
| 6 |
5
|
sseq2d |
|- ( a = b -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) ) ) |
| 7 |
|
fveq2 |
|- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
| 8 |
7
|
sseq2d |
|- ( a = suc b -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
| 9 |
|
fveq2 |
|- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
| 10 |
9
|
sseq2d |
|- ( a = A -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` a ) <-> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` A ) ) ) |
| 11 |
|
ssidd |
|- ( B e. _om -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` B ) ) |
| 12 |
1 2
|
ackbij2lem3 |
|- ( b e. _om -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) ) |
| 14 |
|
sstr2 |
|- ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) -> ( ( rec ( G , (/) ) ` b ) C_ ( rec ( G , (/) ) ` suc b ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
| 15 |
13 14
|
syl5com |
|- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` b ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` suc b ) ) ) |
| 16 |
4 6 8 10 11 15
|
findsg |
|- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( rec ( G , (/) ) ` B ) C_ ( rec ( G , (/) ) ` A ) ) |