Step |
Hyp |
Ref |
Expression |
1 |
|
ackbijnn.1 |
|- F = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
2 |
|
hashgval2 |
|- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
3 |
2
|
hashgf1o |
|- ( # |` _om ) : _om -1-1-onto-> NN0 |
4 |
|
sneq |
|- ( w = y -> { w } = { y } ) |
5 |
|
pweq |
|- ( w = y -> ~P w = ~P y ) |
6 |
4 5
|
xpeq12d |
|- ( w = y -> ( { w } X. ~P w ) = ( { y } X. ~P y ) ) |
7 |
6
|
cbviunv |
|- U_ w e. z ( { w } X. ~P w ) = U_ y e. z ( { y } X. ~P y ) |
8 |
|
iuneq1 |
|- ( z = x -> U_ y e. z ( { y } X. ~P y ) = U_ y e. x ( { y } X. ~P y ) ) |
9 |
7 8
|
eqtrid |
|- ( z = x -> U_ w e. z ( { w } X. ~P w ) = U_ y e. x ( { y } X. ~P y ) ) |
10 |
9
|
fveq2d |
|- ( z = x -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
11 |
10
|
cbvmptv |
|- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
12 |
11
|
ackbij1 |
|- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om |
13 |
|
f1ocnv |
|- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> `' ( # |` _om ) : NN0 -1-1-onto-> _om ) |
14 |
3 13
|
ax-mp |
|- `' ( # |` _om ) : NN0 -1-1-onto-> _om |
15 |
|
f1opwfi |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) |
16 |
14 15
|
ax-mp |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) |
17 |
|
f1oco |
|- ( ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om /\ ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) |
18 |
12 16 17
|
mp2an |
|- ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om |
19 |
|
f1oco |
|- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
20 |
3 18 19
|
mp2an |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |
21 |
|
inss2 |
|- ( ~P _om i^i Fin ) C_ Fin |
22 |
|
f1of |
|- ( ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
23 |
16 22
|
ax-mp |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) |
24 |
|
eqid |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) |
25 |
24
|
fmpt |
|- ( A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) <-> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
26 |
23 25
|
mpbir |
|- A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) |
27 |
26
|
rspec |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
28 |
21 27
|
sselid |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. Fin ) |
29 |
|
snfi |
|- { w } e. Fin |
30 |
|
cnvimass |
|- ( `' ( # |` _om ) " x ) C_ dom ( # |` _om ) |
31 |
|
dmhashres |
|- dom ( # |` _om ) = _om |
32 |
30 31
|
sseqtri |
|- ( `' ( # |` _om ) " x ) C_ _om |
33 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
34 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
35 |
33 34
|
eqsstri |
|- _om C_ Fin |
36 |
32 35
|
sstri |
|- ( `' ( # |` _om ) " x ) C_ Fin |
37 |
|
simpr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. ( `' ( # |` _om ) " x ) ) |
38 |
36 37
|
sselid |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. Fin ) |
39 |
|
pwfi |
|- ( w e. Fin <-> ~P w e. Fin ) |
40 |
38 39
|
sylib |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ~P w e. Fin ) |
41 |
|
xpfi |
|- ( ( { w } e. Fin /\ ~P w e. Fin ) -> ( { w } X. ~P w ) e. Fin ) |
42 |
29 40 41
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( { w } X. ~P w ) e. Fin ) |
43 |
42
|
ralrimiva |
|- ( x e. ( ~P NN0 i^i Fin ) -> A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
44 |
|
iunfi |
|- ( ( ( `' ( # |` _om ) " x ) e. Fin /\ A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
45 |
28 43 44
|
syl2anc |
|- ( x e. ( ~P NN0 i^i Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
46 |
|
ficardom |
|- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
47 |
45 46
|
syl |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
48 |
47
|
fvresd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
49 |
|
hashcard |
|- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
50 |
45 49
|
syl |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
51 |
|
xp1st |
|- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) e. { w } ) |
52 |
|
elsni |
|- ( ( 1st ` z ) e. { w } -> ( 1st ` z ) = w ) |
53 |
51 52
|
syl |
|- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) = w ) |
54 |
53
|
rgen |
|- A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
55 |
54
|
rgenw |
|- A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
56 |
|
invdisj |
|- ( A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
57 |
55 56
|
mp1i |
|- ( x e. ( ~P NN0 i^i Fin ) -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
58 |
28 42 57
|
hashiun |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) ) |
59 |
|
sneq |
|- ( w = ( `' ( # |` _om ) ` y ) -> { w } = { ( `' ( # |` _om ) ` y ) } ) |
60 |
|
pweq |
|- ( w = ( `' ( # |` _om ) ` y ) -> ~P w = ~P ( `' ( # |` _om ) ` y ) ) |
61 |
59 60
|
xpeq12d |
|- ( w = ( `' ( # |` _om ) ` y ) -> ( { w } X. ~P w ) = ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) |
62 |
61
|
fveq2d |
|- ( w = ( `' ( # |` _om ) ` y ) -> ( # ` ( { w } X. ~P w ) ) = ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
63 |
|
elinel2 |
|- ( x e. ( ~P NN0 i^i Fin ) -> x e. Fin ) |
64 |
|
f1of1 |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 -1-1-> _om ) |
65 |
14 64
|
ax-mp |
|- `' ( # |` _om ) : NN0 -1-1-> _om |
66 |
|
elinel1 |
|- ( x e. ( ~P NN0 i^i Fin ) -> x e. ~P NN0 ) |
67 |
66
|
elpwid |
|- ( x e. ( ~P NN0 i^i Fin ) -> x C_ NN0 ) |
68 |
|
f1ores |
|- ( ( `' ( # |` _om ) : NN0 -1-1-> _om /\ x C_ NN0 ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
69 |
65 67 68
|
sylancr |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
70 |
|
fvres |
|- ( y e. x -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
71 |
70
|
adantl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
72 |
|
hashcl |
|- ( ( { w } X. ~P w ) e. Fin -> ( # ` ( { w } X. ~P w ) ) e. NN0 ) |
73 |
|
nn0cn |
|- ( ( # ` ( { w } X. ~P w ) ) e. NN0 -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
74 |
42 72 73
|
3syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
75 |
62 63 69 71 74
|
fsumf1o |
|- ( x e. ( ~P NN0 i^i Fin ) -> sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) = sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
76 |
|
snfi |
|- { ( `' ( # |` _om ) ` y ) } e. Fin |
77 |
67
|
sselda |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> y e. NN0 ) |
78 |
|
f1of |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 --> _om ) |
79 |
14 78
|
ax-mp |
|- `' ( # |` _om ) : NN0 --> _om |
80 |
79
|
ffvelrni |
|- ( y e. NN0 -> ( `' ( # |` _om ) ` y ) e. _om ) |
81 |
77 80
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. _om ) |
82 |
35 81
|
sselid |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. Fin ) |
83 |
|
pwfi |
|- ( ( `' ( # |` _om ) ` y ) e. Fin <-> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
84 |
82 83
|
sylib |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
85 |
|
hashxp |
|- ( ( { ( `' ( # |` _om ) ` y ) } e. Fin /\ ~P ( `' ( # |` _om ) ` y ) e. Fin ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
86 |
76 84 85
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
87 |
|
hashsng |
|- ( ( `' ( # |` _om ) ` y ) e. _om -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
88 |
81 87
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
89 |
|
hashpw |
|- ( ( `' ( # |` _om ) ` y ) e. Fin -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
90 |
82 89
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
91 |
81
|
fvresd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = ( # ` ( `' ( # |` _om ) ` y ) ) ) |
92 |
|
f1ocnvfv2 |
|- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ y e. NN0 ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
93 |
3 77 92
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
94 |
91 93
|
eqtr3d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( `' ( # |` _om ) ` y ) ) = y ) |
95 |
94
|
oveq2d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
96 |
90 95
|
eqtrd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ y ) ) |
97 |
88 96
|
oveq12d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) = ( 1 x. ( 2 ^ y ) ) ) |
98 |
|
2cn |
|- 2 e. CC |
99 |
|
expcl |
|- ( ( 2 e. CC /\ y e. NN0 ) -> ( 2 ^ y ) e. CC ) |
100 |
98 77 99
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ y ) e. CC ) |
101 |
100
|
mulid2d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 1 x. ( 2 ^ y ) ) = ( 2 ^ y ) ) |
102 |
86 97 101
|
3eqtrd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
103 |
102
|
sumeq2dv |
|- ( x e. ( ~P NN0 i^i Fin ) -> sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
104 |
58 75 103
|
3eqtrd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ y e. x ( 2 ^ y ) ) |
105 |
48 50 104
|
3eqtrd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
106 |
105
|
mpteq2ia |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
107 |
47
|
adantl |
|- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
108 |
27
|
adantl |
|- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
109 |
|
eqidd |
|- ( T. -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) |
110 |
|
eqidd |
|- ( T. -> ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) ) |
111 |
|
iuneq1 |
|- ( z = ( `' ( # |` _om ) " x ) -> U_ w e. z ( { w } X. ~P w ) = U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
112 |
111
|
fveq2d |
|- ( z = ( `' ( # |` _om ) " x ) -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
113 |
108 109 110 112
|
fmptco |
|- ( T. -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
114 |
|
f1of |
|- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> ( # |` _om ) : _om --> NN0 ) |
115 |
3 114
|
mp1i |
|- ( T. -> ( # |` _om ) : _om --> NN0 ) |
116 |
115
|
feqmptd |
|- ( T. -> ( # |` _om ) = ( y e. _om |-> ( ( # |` _om ) ` y ) ) ) |
117 |
|
fveq2 |
|- ( y = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) -> ( ( # |` _om ) ` y ) = ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
118 |
107 113 116 117
|
fmptco |
|- ( T. -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) ) |
119 |
118
|
mptru |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
120 |
106 119 1
|
3eqtr4i |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F |
121 |
|
f1oeq1 |
|- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F -> ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) ) |
122 |
120 121
|
ax-mp |
|- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
123 |
20 122
|
mpbi |
|- F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |