Description: The Ackermann function at any nonnegative integer is a function on the nonnegative integers. (Contributed by AV, 4-May-2024) (Proof shortened by AV, 8-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ackfnnn0 | |- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackendofnn0 | |- ( M e. NN0 -> ( Ack ` M ) : NN0 --> NN0 ) |
|
2 | ffn | |- ( ( Ack ` M ) : NN0 --> NN0 -> ( Ack ` M ) Fn NN0 ) |
|
3 | 1 2 | syl | |- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |