| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1e0p1 | 
							 |-  1 = ( 0 + 1 )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2i | 
							 |-  ( Ack ` 1 ) = ( Ack ` ( 0 + 1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 4 | 
							
								
							 | 
							ackvalsuc1mpt | 
							 |-  ( 0 e. NN0 -> ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							 |-  ( Ack ` ( 0 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							peano2nn0 | 
							 |-  ( n e. NN0 -> ( n + 1 ) e. NN0 )  | 
						
						
							| 7 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 8 | 
							
								
							 | 
							ackval0 | 
							 |-  ( Ack ` 0 ) = ( i e. NN0 |-> ( i + 1 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							itcovalpc | 
							 |-  ( ( ( n + 1 ) e. NN0 /\ 1 e. NN0 ) -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) )  | 
						
						
							| 10 | 
							
								6 7 9
							 | 
							sylancl | 
							 |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nn0cn | 
							 |-  ( ( n + 1 ) e. NN0 -> ( n + 1 ) e. CC )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							syl | 
							 |-  ( n e. NN0 -> ( n + 1 ) e. CC )  | 
						
						
							| 13 | 
							
								12
							 | 
							mullidd | 
							 |-  ( n e. NN0 -> ( 1 x. ( n + 1 ) ) = ( n + 1 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( n e. NN0 -> ( i + ( 1 x. ( n + 1 ) ) ) = ( i + ( n + 1 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpteq2dv | 
							 |-  ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 1 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							eqtrd | 
							 |-  ( n e. NN0 -> ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							fveq1d | 
							 |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqidd | 
							 |-  ( n e. NN0 -> ( i e. NN0 |-> ( i + ( n + 1 ) ) ) = ( i e. NN0 |-> ( i + ( n + 1 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							 |-  ( i = 1 -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantl | 
							 |-  ( ( n e. NN0 /\ i = 1 ) -> ( i + ( n + 1 ) ) = ( 1 + ( n + 1 ) ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							a1i | 
							 |-  ( n e. NN0 -> 1 e. NN0 )  | 
						
						
							| 22 | 
							
								
							 | 
							ovexd | 
							 |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) e. _V )  | 
						
						
							| 23 | 
							
								18 20 21 22
							 | 
							fvmptd | 
							 |-  ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( n + 1 ) ) ) ` 1 ) = ( 1 + ( n + 1 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							1cnd | 
							 |-  ( n e. NN0 -> 1 e. CC )  | 
						
						
							| 25 | 
							
								
							 | 
							nn0cn | 
							 |-  ( n e. NN0 -> n e. CC )  | 
						
						
							| 26 | 
							
								
							 | 
							peano2cn | 
							 |-  ( n e. CC -> ( n + 1 ) e. CC )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( n e. NN0 -> ( n + 1 ) e. CC )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							addcomd | 
							 |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( ( n + 1 ) + 1 ) )  | 
						
						
							| 29 | 
							
								25 24 24
							 | 
							addassd | 
							 |-  ( n e. NN0 -> ( ( n + 1 ) + 1 ) = ( n + ( 1 + 1 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							1p1e2 | 
							 |-  ( 1 + 1 ) = 2  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq2i | 
							 |-  ( n + ( 1 + 1 ) ) = ( n + 2 )  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							 |-  ( n e. NN0 -> ( n + ( 1 + 1 ) ) = ( n + 2 ) )  | 
						
						
							| 33 | 
							
								28 29 32
							 | 
							3eqtrd | 
							 |-  ( n e. NN0 -> ( 1 + ( n + 1 ) ) = ( n + 2 ) )  | 
						
						
							| 34 | 
							
								17 23 33
							 | 
							3eqtrd | 
							 |-  ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) = ( n + 2 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							mpteq2ia | 
							 |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 0 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( n + 2 ) )  | 
						
						
							| 36 | 
							
								2 5 35
							 | 
							3eqtri | 
							 |-  ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) )  |