Step |
Hyp |
Ref |
Expression |
1 |
|
ackval1 |
|- ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) |
2 |
|
oveq1 |
|- ( n = 0 -> ( n + 2 ) = ( 0 + 2 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
3
|
addid2i |
|- ( 0 + 2 ) = 2 |
5 |
2 4
|
eqtrdi |
|- ( n = 0 -> ( n + 2 ) = 2 ) |
6 |
|
0nn0 |
|- 0 e. NN0 |
7 |
6
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 0 e. NN0 ) |
8 |
|
2nn0 |
|- 2 e. NN0 |
9 |
8
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 2 e. NN0 ) |
10 |
1 5 7 9
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 0 ) = 2 ) |
11 |
|
oveq1 |
|- ( n = 1 -> ( n + 2 ) = ( 1 + 2 ) ) |
12 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
13 |
11 12
|
eqtrdi |
|- ( n = 1 -> ( n + 2 ) = 3 ) |
14 |
|
1nn0 |
|- 1 e. NN0 |
15 |
14
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 1 e. NN0 ) |
16 |
|
3nn0 |
|- 3 e. NN0 |
17 |
16
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 3 e. NN0 ) |
18 |
1 13 15 17
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 1 ) = 3 ) |
19 |
|
oveq1 |
|- ( n = 2 -> ( n + 2 ) = ( 2 + 2 ) ) |
20 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
21 |
19 20
|
eqtrdi |
|- ( n = 2 -> ( n + 2 ) = 4 ) |
22 |
|
4nn0 |
|- 4 e. NN0 |
23 |
22
|
a1i |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 4 e. NN0 ) |
24 |
1 21 9 23
|
fvmptd3 |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 2 ) = 4 ) |
25 |
10 18 24
|
oteq123d |
|- ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. ) |
26 |
1 25
|
ax-mp |
|- <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. |