| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ackval1 | 
							 |-  ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = 0 -> ( n + 2 ) = ( 0 + 2 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 4 | 
							
								3
							 | 
							addlidi | 
							 |-  ( 0 + 2 ) = 2  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eqtrdi | 
							 |-  ( n = 0 -> ( n + 2 ) = 2 )  | 
						
						
							| 6 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 0 e. NN0 )  | 
						
						
							| 8 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 2 e. NN0 )  | 
						
						
							| 10 | 
							
								1 5 7 9
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 0 ) = 2 )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = 1 -> ( n + 2 ) = ( 1 + 2 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							1p2e3 | 
							 |-  ( 1 + 2 ) = 3  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqtrdi | 
							 |-  ( n = 1 -> ( n + 2 ) = 3 )  | 
						
						
							| 14 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 1 e. NN0 )  | 
						
						
							| 16 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 3 e. NN0 )  | 
						
						
							| 18 | 
							
								1 13 15 17
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 1 ) = 3 )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = 2 -> ( n + 2 ) = ( 2 + 2 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							2p2e4 | 
							 |-  ( 2 + 2 ) = 4  | 
						
						
							| 21 | 
							
								19 20
							 | 
							eqtrdi | 
							 |-  ( n = 2 -> ( n + 2 ) = 4 )  | 
						
						
							| 22 | 
							
								
							 | 
							4nn0 | 
							 |-  4 e. NN0  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> 4 e. NN0 )  | 
						
						
							| 24 | 
							
								1 21 9 23
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> ( ( Ack ` 1 ) ` 2 ) = 4 )  | 
						
						
							| 25 | 
							
								10 18 24
							 | 
							oteq123d | 
							 |-  ( ( Ack ` 1 ) = ( n e. NN0 |-> ( n + 2 ) ) -> <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >. )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							ax-mp | 
							 |-  <. ( ( Ack ` 1 ) ` 0 ) , ( ( Ack ` 1 ) ` 1 ) , ( ( Ack ` 1 ) ` 2 ) >. = <. 2 , 3 , 4 >.  |