Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
2 |
1
|
fveq2i |
|- ( Ack ` 2 ) = ( Ack ` ( 1 + 1 ) ) |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
|
ackvalsuc1mpt |
|- ( 1 e. NN0 -> ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) ) |
5 |
3 4
|
ax-mp |
|- ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) |
6 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
7 |
|
2nn0 |
|- 2 e. NN0 |
8 |
|
ackval1 |
|- ( Ack ` 1 ) = ( i e. NN0 |-> ( i + 2 ) ) |
9 |
8
|
itcovalpc |
|- ( ( ( n + 1 ) e. NN0 /\ 2 e. NN0 ) -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
10 |
6 7 9
|
sylancl |
|- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
11 |
10
|
fveq1d |
|- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) ) |
12 |
|
eqidd |
|- ( n e. NN0 -> ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) |
13 |
|
oveq1 |
|- ( i = 1 -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
14 |
13
|
adantl |
|- ( ( n e. NN0 /\ i = 1 ) -> ( i + ( 2 x. ( n + 1 ) ) ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
15 |
3
|
a1i |
|- ( n e. NN0 -> 1 e. NN0 ) |
16 |
|
ovexd |
|- ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) e. _V ) |
17 |
12 14 15 16
|
fvmptd |
|- ( n e. NN0 -> ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) = ( 1 + ( 2 x. ( n + 1 ) ) ) ) |
18 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
19 |
|
1cnd |
|- ( n e. CC -> 1 e. CC ) |
20 |
|
2cnd |
|- ( n e. CC -> 2 e. CC ) |
21 |
|
peano2cn |
|- ( n e. CC -> ( n + 1 ) e. CC ) |
22 |
20 21
|
mulcld |
|- ( n e. CC -> ( 2 x. ( n + 1 ) ) e. CC ) |
23 |
19 22
|
addcomd |
|- ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. ( n + 1 ) ) + 1 ) ) |
24 |
|
id |
|- ( n e. CC -> n e. CC ) |
25 |
20 24 19
|
adddid |
|- ( n e. CC -> ( 2 x. ( n + 1 ) ) = ( ( 2 x. n ) + ( 2 x. 1 ) ) ) |
26 |
25
|
oveq1d |
|- ( n e. CC -> ( ( 2 x. ( n + 1 ) ) + 1 ) = ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) ) |
27 |
20 24
|
mulcld |
|- ( n e. CC -> ( 2 x. n ) e. CC ) |
28 |
20 19
|
mulcld |
|- ( n e. CC -> ( 2 x. 1 ) e. CC ) |
29 |
27 28 19
|
addassd |
|- ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) ) |
30 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
31 |
30
|
oveq1i |
|- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
32 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
33 |
31 32
|
eqtri |
|- ( ( 2 x. 1 ) + 1 ) = 3 |
34 |
33
|
a1i |
|- ( n e. CC -> ( ( 2 x. 1 ) + 1 ) = 3 ) |
35 |
34
|
oveq2d |
|- ( n e. CC -> ( ( 2 x. n ) + ( ( 2 x. 1 ) + 1 ) ) = ( ( 2 x. n ) + 3 ) ) |
36 |
29 35
|
eqtrd |
|- ( n e. CC -> ( ( ( 2 x. n ) + ( 2 x. 1 ) ) + 1 ) = ( ( 2 x. n ) + 3 ) ) |
37 |
23 26 36
|
3eqtrd |
|- ( n e. CC -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) |
38 |
18 37
|
syl |
|- ( n e. NN0 -> ( 1 + ( 2 x. ( n + 1 ) ) ) = ( ( 2 x. n ) + 3 ) ) |
39 |
11 17 38
|
3eqtrd |
|- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 x. n ) + 3 ) ) |
40 |
39
|
mpteq2ia |
|- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |
41 |
2 5 40
|
3eqtri |
|- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) |