| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ackval2 | 
							 |-  ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = 0 -> ( 2 x. n ) = ( 2 x. 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							oveq1d | 
							 |-  ( n = 0 -> ( ( 2 x. n ) + 3 ) = ( ( 2 x. 0 ) + 3 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							2t0e0 | 
							 |-  ( 2 x. 0 ) = 0  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1i | 
							 |-  ( ( 2 x. 0 ) + 3 ) = ( 0 + 3 )  | 
						
						
							| 6 | 
							
								
							 | 
							3cn | 
							 |-  3 e. CC  | 
						
						
							| 7 | 
							
								6
							 | 
							addlidi | 
							 |-  ( 0 + 3 ) = 3  | 
						
						
							| 8 | 
							
								5 7
							 | 
							eqtri | 
							 |-  ( ( 2 x. 0 ) + 3 ) = 3  | 
						
						
							| 9 | 
							
								3 8
							 | 
							eqtrdi | 
							 |-  ( n = 0 -> ( ( 2 x. n ) + 3 ) = 3 )  | 
						
						
							| 10 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 0 e. NN0 )  | 
						
						
							| 12 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 3 e. NN0 )  | 
						
						
							| 14 | 
							
								1 9 11 13
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 0 ) = 3 )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = 1 -> ( 2 x. n ) = ( 2 x. 1 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( n = 1 -> ( ( 2 x. n ) + 3 ) = ( ( 2 x. 1 ) + 3 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1i | 
							 |-  ( ( 2 x. 1 ) + 3 ) = ( 2 + 3 )  | 
						
						
							| 19 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 20 | 
							
								
							 | 
							3p2e5 | 
							 |-  ( 3 + 2 ) = 5  | 
						
						
							| 21 | 
							
								6 19 20
							 | 
							addcomli | 
							 |-  ( 2 + 3 ) = 5  | 
						
						
							| 22 | 
							
								18 21
							 | 
							eqtri | 
							 |-  ( ( 2 x. 1 ) + 3 ) = 5  | 
						
						
							| 23 | 
							
								16 22
							 | 
							eqtrdi | 
							 |-  ( n = 1 -> ( ( 2 x. n ) + 3 ) = 5 )  | 
						
						
							| 24 | 
							
								
							 | 
							1nn0 | 
							 |-  1 e. NN0  | 
						
						
							| 25 | 
							
								24
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 1 e. NN0 )  | 
						
						
							| 26 | 
							
								
							 | 
							5nn0 | 
							 |-  5 e. NN0  | 
						
						
							| 27 | 
							
								26
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 5 e. NN0 )  | 
						
						
							| 28 | 
							
								1 23 25 27
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 1 ) = 5 )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = 2 -> ( 2 x. n ) = ( 2 x. 2 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq1d | 
							 |-  ( n = 2 -> ( ( 2 x. n ) + 3 ) = ( ( 2 x. 2 ) + 3 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							2t2e4 | 
							 |-  ( 2 x. 2 ) = 4  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1i | 
							 |-  ( ( 2 x. 2 ) + 3 ) = ( 4 + 3 )  | 
						
						
							| 33 | 
							
								
							 | 
							4p3e7 | 
							 |-  ( 4 + 3 ) = 7  | 
						
						
							| 34 | 
							
								32 33
							 | 
							eqtri | 
							 |-  ( ( 2 x. 2 ) + 3 ) = 7  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrdi | 
							 |-  ( n = 2 -> ( ( 2 x. n ) + 3 ) = 7 )  | 
						
						
							| 36 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 37 | 
							
								36
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 2 e. NN0 )  | 
						
						
							| 38 | 
							
								
							 | 
							7nn0 | 
							 |-  7 e. NN0  | 
						
						
							| 39 | 
							
								38
							 | 
							a1i | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> 7 e. NN0 )  | 
						
						
							| 40 | 
							
								1 35 37 39
							 | 
							fvmptd3 | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> ( ( Ack ` 2 ) ` 2 ) = 7 )  | 
						
						
							| 41 | 
							
								14 28 40
							 | 
							oteq123d | 
							 |-  ( ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) -> <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >. )  | 
						
						
							| 42 | 
							
								1 41
							 | 
							ax-mp | 
							 |-  <. ( ( Ack ` 2 ) ` 0 ) , ( ( Ack ` 2 ) ` 1 ) , ( ( Ack ` 2 ) ` 2 ) >. = <. 3 , 5 , 7 >.  |