Step |
Hyp |
Ref |
Expression |
1 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
2 |
1
|
fveq2i |
|- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) |
3 |
2
|
fveq1i |
|- ( ( Ack ` 4 ) ` 0 ) = ( ( Ack ` ( 3 + 1 ) ) ` 0 ) |
4 |
|
3nn0 |
|- 3 e. NN0 |
5 |
|
ackvalsuc0val |
|- ( 3 e. NN0 -> ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) ) |
6 |
4 5
|
ax-mp |
|- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 3 ) ` 1 ) |
7 |
|
ackval3012 |
|- <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. |
8 |
|
fvex |
|- ( ( Ack ` 3 ) ` 0 ) e. _V |
9 |
|
fvex |
|- ( ( Ack ` 3 ) ` 1 ) e. _V |
10 |
|
fvex |
|- ( ( Ack ` 3 ) ` 2 ) e. _V |
11 |
8 9 10
|
otth |
|- ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. <-> ( ( ( Ack ` 3 ) ` 0 ) = 5 /\ ( ( Ack ` 3 ) ` 1 ) = ; 1 3 /\ ( ( Ack ` 3 ) ` 2 ) = ; 2 9 ) ) |
12 |
11
|
simp2bi |
|- ( <. ( ( Ack ` 3 ) ` 0 ) , ( ( Ack ` 3 ) ` 1 ) , ( ( Ack ` 3 ) ` 2 ) >. = <. 5 , ; 1 3 , ; 2 9 >. -> ( ( Ack ` 3 ) ` 1 ) = ; 1 3 ) |
13 |
7 12
|
ax-mp |
|- ( ( Ack ` 3 ) ` 1 ) = ; 1 3 |
14 |
3 6 13
|
3eqtri |
|- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 |