| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 2 |
1
|
fveq2i |
|- ( Ack ` 4 ) = ( Ack ` ( 3 + 1 ) ) |
| 3 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 4 |
2 3
|
fveq12i |
|- ( ( Ack ` 4 ) ` 1 ) = ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) |
| 5 |
|
3nn0 |
|- 3 e. NN0 |
| 6 |
|
0nn0 |
|- 0 e. NN0 |
| 7 |
|
ackvalsucsucval |
|- ( ( 3 e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) |
| 9 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 10 |
9
|
fveq2i |
|- ( Ack ` ( 3 + 1 ) ) = ( Ack ` 4 ) |
| 11 |
10
|
fveq1i |
|- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 0 ) |
| 12 |
|
ackval40 |
|- ( ( Ack ` 4 ) ` 0 ) = ; 1 3 |
| 13 |
11 12
|
eqtri |
|- ( ( Ack ` ( 3 + 1 ) ) ` 0 ) = ; 1 3 |
| 14 |
13
|
fveq2i |
|- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( Ack ` 3 ) ` ; 1 3 ) |
| 15 |
|
1nn0 |
|- 1 e. NN0 |
| 16 |
15 5
|
deccl |
|- ; 1 3 e. NN0 |
| 17 |
|
oveq1 |
|- ( n = ; 1 3 -> ( n + 3 ) = ( ; 1 3 + 3 ) ) |
| 18 |
17
|
oveq2d |
|- ( n = ; 1 3 -> ( 2 ^ ( n + 3 ) ) = ( 2 ^ ( ; 1 3 + 3 ) ) ) |
| 19 |
18
|
oveq1d |
|- ( n = ; 1 3 -> ( ( 2 ^ ( n + 3 ) ) - 3 ) = ( ( 2 ^ ( ; 1 3 + 3 ) ) - 3 ) ) |
| 20 |
|
eqid |
|- ; 1 3 = ; 1 3 |
| 21 |
|
3p3e6 |
|- ( 3 + 3 ) = 6 |
| 22 |
15 5 5 20 21
|
decaddi |
|- ( ; 1 3 + 3 ) = ; 1 6 |
| 23 |
22
|
oveq2i |
|- ( 2 ^ ( ; 1 3 + 3 ) ) = ( 2 ^ ; 1 6 ) |
| 24 |
23
|
oveq1i |
|- ( ( 2 ^ ( ; 1 3 + 3 ) ) - 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 25 |
19 24
|
eqtrdi |
|- ( n = ; 1 3 -> ( ( 2 ^ ( n + 3 ) ) - 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) |
| 26 |
|
ackval3 |
|- ( Ack ` 3 ) = ( n e. NN0 |-> ( ( 2 ^ ( n + 3 ) ) - 3 ) ) |
| 27 |
|
ovex |
|- ( ( 2 ^ ; 1 6 ) - 3 ) e. _V |
| 28 |
25 26 27
|
fvmpt |
|- ( ; 1 3 e. NN0 -> ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) ) |
| 29 |
16 28
|
ax-mp |
|- ( ( Ack ` 3 ) ` ; 1 3 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 30 |
14 29
|
eqtri |
|- ( ( Ack ` 3 ) ` ( ( Ack ` ( 3 + 1 ) ) ` 0 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 31 |
8 30
|
eqtri |
|- ( ( Ack ` ( 3 + 1 ) ) ` ( 0 + 1 ) ) = ( ( 2 ^ ; 1 6 ) - 3 ) |
| 32 |
4 31
|
eqtri |
|- ( ( Ack ` 4 ) ` 1 ) = ( ( 2 ^ ; 1 6 ) - 3 ) |