Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
|- 0 e. NN0 |
2 |
|
ackvalsuc1 |
|- ( ( M e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
3 |
1 2
|
mpan2 |
|- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
4 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
5 |
4
|
a1i |
|- ( M e. NN0 -> ( 0 + 1 ) = 1 ) |
6 |
5
|
fveq2d |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` 1 ) ) |
7 |
|
ackfnnn0 |
|- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |
8 |
|
fnfun |
|- ( ( Ack ` M ) Fn NN0 -> Fun ( Ack ` M ) ) |
9 |
|
funrel |
|- ( Fun ( Ack ` M ) -> Rel ( Ack ` M ) ) |
10 |
7 8 9
|
3syl |
|- ( M e. NN0 -> Rel ( Ack ` M ) ) |
11 |
|
fvex |
|- ( Ack ` M ) e. _V |
12 |
|
itcoval1 |
|- ( ( Rel ( Ack ` M ) /\ ( Ack ` M ) e. _V ) -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
13 |
10 11 12
|
sylancl |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
14 |
6 13
|
eqtrd |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( Ack ` M ) ) |
15 |
14
|
fveq1d |
|- ( M e. NN0 -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` 1 ) ) |
16 |
3 15
|
eqtrd |
|- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( Ack ` M ) ` 1 ) ) |