| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|- 0 e. NN0 |
| 2 |
|
ackvalsuc1 |
|- ( ( M e. NN0 /\ 0 e. NN0 ) -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
| 3 |
1 2
|
mpan2 |
|- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) ) |
| 4 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 5 |
4
|
a1i |
|- ( M e. NN0 -> ( 0 + 1 ) = 1 ) |
| 6 |
5
|
fveq2d |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` 1 ) ) |
| 7 |
|
ackfnnn0 |
|- ( M e. NN0 -> ( Ack ` M ) Fn NN0 ) |
| 8 |
|
fnfun |
|- ( ( Ack ` M ) Fn NN0 -> Fun ( Ack ` M ) ) |
| 9 |
|
funrel |
|- ( Fun ( Ack ` M ) -> Rel ( Ack ` M ) ) |
| 10 |
7 8 9
|
3syl |
|- ( M e. NN0 -> Rel ( Ack ` M ) ) |
| 11 |
|
fvex |
|- ( Ack ` M ) e. _V |
| 12 |
|
itcoval1 |
|- ( ( Rel ( Ack ` M ) /\ ( Ack ` M ) e. _V ) -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
| 13 |
10 11 12
|
sylancl |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` 1 ) = ( Ack ` M ) ) |
| 14 |
6 13
|
eqtrd |
|- ( M e. NN0 -> ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) = ( Ack ` M ) ) |
| 15 |
14
|
fveq1d |
|- ( M e. NN0 -> ( ( ( IterComp ` ( Ack ` M ) ) ` ( 0 + 1 ) ) ` 1 ) = ( ( Ack ` M ) ` 1 ) ) |
| 16 |
3 15
|
eqtrd |
|- ( M e. NN0 -> ( ( Ack ` ( M + 1 ) ) ` 0 ) = ( ( Ack ` M ) ` 1 ) ) |