| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-ack | 
							 |-  Ack = seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1i | 
							 |-  ( Ack ` ( M + 1 ) ) = ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn0uz | 
							 |-  NN0 = ( ZZ>= ` 0 )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							 |-  ( M e. NN0 -> M e. NN0 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( M + 1 ) = ( M + 1 )  | 
						
						
							| 6 | 
							
								1
							 | 
							eqcomi | 
							 |-  seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) = Ack  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq1i | 
							 |-  ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` M ) = ( Ack ` M ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqidd | 
							 |-  ( M e. NN0 -> ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) = ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nn0p1gt0 | 
							 |-  ( M e. NN0 -> 0 < ( M + 1 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							gt0ne0d | 
							 |-  ( M e. NN0 -> ( M + 1 ) =/= 0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( M + 1 ) =/= 0 )  | 
						
						
							| 13 | 
							
								
							 | 
							neeq1 | 
							 |-  ( i = ( M + 1 ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> ( i =/= 0 <-> ( M + 1 ) =/= 0 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							mpbird | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i =/= 0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							neneqd | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> -. i = 0 )  | 
						
						
							| 17 | 
							
								16
							 | 
							iffalsed | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = i )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> i = ( M + 1 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							eqtrd | 
							 |-  ( ( M e. NN0 /\ i = ( M + 1 ) ) -> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) = ( M + 1 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							peano2nn0 | 
							 |-  ( M e. NN0 -> ( M + 1 ) e. NN0 )  | 
						
						
							| 21 | 
							
								9 19 20 20
							 | 
							fvmptd | 
							 |-  ( M e. NN0 -> ( ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ` ( M + 1 ) ) = ( M + 1 ) )  | 
						
						
							| 22 | 
							
								3 4 5 8 21
							 | 
							seqp1d | 
							 |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqidd | 
							 |-  ( M e. NN0 -> ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) = ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq2 | 
							 |-  ( f = ( Ack ` M ) -> ( IterComp ` f ) = ( IterComp ` ( Ack ` M ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq1d | 
							 |-  ( f = ( Ack ` M ) -> ( ( IterComp ` f ) ` ( n + 1 ) ) = ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq1d | 
							 |-  ( f = ( Ack ` M ) -> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) = ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							mpteq2dv | 
							 |-  ( f = ( Ack ` M ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad2antrl | 
							 |-  ( ( M e. NN0 /\ ( f = ( Ack ` M ) /\ j = ( M + 1 ) ) ) -> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fvexd | 
							 |-  ( M e. NN0 -> ( Ack ` M ) e. _V )  | 
						
						
							| 30 | 
							
								
							 | 
							ovexd | 
							 |-  ( M e. NN0 -> ( M + 1 ) e. _V )  | 
						
						
							| 31 | 
							
								
							 | 
							nn0ex | 
							 |-  NN0 e. _V  | 
						
						
							| 32 | 
							
								31
							 | 
							mptex | 
							 |-  ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							 |-  ( M e. NN0 -> ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) e. _V )  | 
						
						
							| 34 | 
							
								23 28 29 30 33
							 | 
							ovmpod | 
							 |-  ( M e. NN0 -> ( ( Ack ` M ) ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) )  | 
						
						
							| 35 | 
							
								22 34
							 | 
							eqtrd | 
							 |-  ( M e. NN0 -> ( seq 0 ( ( f e. _V , j e. _V |-> ( n e. NN0 |-> ( ( ( IterComp ` f ) ` ( n + 1 ) ) ` 1 ) ) ) , ( i e. NN0 |-> if ( i = 0 , ( n e. NN0 |-> ( n + 1 ) ) , i ) ) ) ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) )  | 
						
						
							| 36 | 
							
								2 35
							 | 
							eqtrid | 
							 |-  ( M e. NN0 -> ( Ack ` ( M + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` M ) ) ` ( n + 1 ) ) ` 1 ) ) )  |