Description: The class of choice sets of length A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acnen | |- ( A ~~ B -> AC_ A = AC_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 2 | endom | |- ( B ~~ A -> B ~<_ A ) |
|
| 3 | acndom | |- ( B ~<_ A -> ( x e. AC_ A -> x e. AC_ B ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( A ~~ B -> ( x e. AC_ A -> x e. AC_ B ) ) |
| 5 | endom | |- ( A ~~ B -> A ~<_ B ) |
|
| 6 | acndom | |- ( A ~<_ B -> ( x e. AC_ B -> x e. AC_ A ) ) |
|
| 7 | 5 6 | syl | |- ( A ~~ B -> ( x e. AC_ B -> x e. AC_ A ) ) |
| 8 | 4 7 | impbid | |- ( A ~~ B -> ( x e. AC_ A <-> x e. AC_ B ) ) |
| 9 | 8 | eqrdv | |- ( A ~~ B -> AC_ A = AC_ B ) |