| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwexg |
|- ( X e. AC_ ~P X -> ~P X e. _V ) |
| 2 |
|
difss |
|- ( ~P X \ { (/) } ) C_ ~P X |
| 3 |
|
ssdomg |
|- ( ~P X e. _V -> ( ( ~P X \ { (/) } ) C_ ~P X -> ( ~P X \ { (/) } ) ~<_ ~P X ) ) |
| 4 |
1 2 3
|
mpisyl |
|- ( X e. AC_ ~P X -> ( ~P X \ { (/) } ) ~<_ ~P X ) |
| 5 |
|
acndom |
|- ( ( ~P X \ { (/) } ) ~<_ ~P X -> ( X e. AC_ ~P X -> X e. AC_ ( ~P X \ { (/) } ) ) ) |
| 6 |
4 5
|
mpcom |
|- ( X e. AC_ ~P X -> X e. AC_ ( ~P X \ { (/) } ) ) |
| 7 |
|
eldifsn |
|- ( x e. ( ~P X \ { (/) } ) <-> ( x e. ~P X /\ x =/= (/) ) ) |
| 8 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
| 9 |
8
|
anim1i |
|- ( ( x e. ~P X /\ x =/= (/) ) -> ( x C_ X /\ x =/= (/) ) ) |
| 10 |
7 9
|
sylbi |
|- ( x e. ( ~P X \ { (/) } ) -> ( x C_ X /\ x =/= (/) ) ) |
| 11 |
10
|
rgen |
|- A. x e. ( ~P X \ { (/) } ) ( x C_ X /\ x =/= (/) ) |
| 12 |
|
acni2 |
|- ( ( X e. AC_ ( ~P X \ { (/) } ) /\ A. x e. ( ~P X \ { (/) } ) ( x C_ X /\ x =/= (/) ) ) -> E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) ) |
| 13 |
6 11 12
|
sylancl |
|- ( X e. AC_ ~P X -> E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) ) |
| 14 |
|
simpr |
|- ( ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) |
| 15 |
7
|
imbi1i |
|- ( ( x e. ( ~P X \ { (/) } ) -> ( f ` x ) e. x ) <-> ( ( x e. ~P X /\ x =/= (/) ) -> ( f ` x ) e. x ) ) |
| 16 |
|
impexp |
|- ( ( ( x e. ~P X /\ x =/= (/) ) -> ( f ` x ) e. x ) <-> ( x e. ~P X -> ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
| 17 |
15 16
|
bitri |
|- ( ( x e. ( ~P X \ { (/) } ) -> ( f ` x ) e. x ) <-> ( x e. ~P X -> ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
| 18 |
17
|
ralbii2 |
|- ( A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x <-> A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 19 |
14 18
|
sylib |
|- ( ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 20 |
19
|
eximi |
|- ( E. f ( f : ( ~P X \ { (/) } ) --> X /\ A. x e. ( ~P X \ { (/) } ) ( f ` x ) e. x ) -> E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 21 |
13 20
|
syl |
|- ( X e. AC_ ~P X -> E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 22 |
|
dfac8a |
|- ( X e. AC_ ~P X -> ( E. f A. x e. ~P X ( x =/= (/) -> ( f ` x ) e. x ) -> X e. dom card ) ) |
| 23 |
21 22
|
mpd |
|- ( X e. AC_ ~P X -> X e. dom card ) |
| 24 |
|
pwexg |
|- ( X e. dom card -> ~P X e. _V ) |
| 25 |
|
numacn |
|- ( ~P X e. _V -> ( X e. dom card -> X e. AC_ ~P X ) ) |
| 26 |
24 25
|
mpcom |
|- ( X e. dom card -> X e. AC_ ~P X ) |
| 27 |
23 26
|
impbii |
|- ( X e. AC_ ~P X <-> X e. dom card ) |