| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. ZZ ) |
| 4 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ A e. ZZ ) -> ( 2 x. A ) e. ZZ ) |
| 5 |
1 3 4
|
sylancr |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. ZZ ) |
| 6 |
|
elfzelz |
|- ( B e. ( 0 ... A ) -> B e. ZZ ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. ZZ ) |
| 8 |
|
congid |
|- ( ( ( 2 x. A ) e. ZZ /\ B e. ZZ ) -> ( 2 x. A ) || ( B - B ) ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) || ( B - B ) ) |
| 10 |
9
|
adantr |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( 2 x. A ) || ( B - B ) ) |
| 11 |
|
oveq2 |
|- ( B = C -> ( B - B ) = ( B - C ) ) |
| 12 |
11
|
adantl |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( B - B ) = ( B - C ) ) |
| 13 |
10 12
|
breqtrd |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( 2 x. A ) || ( B - C ) ) |
| 14 |
13
|
orcd |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) |
| 15 |
|
elfzelz |
|- ( C e. ( 0 ... A ) -> C e. ZZ ) |
| 16 |
15
|
3ad2ant3 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. ZZ ) |
| 17 |
7 16
|
zsubcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - C ) e. ZZ ) |
| 18 |
17
|
zcnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - C ) e. CC ) |
| 19 |
18
|
abscld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) e. RR ) |
| 20 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. RR ) |
| 22 |
|
0re |
|- 0 e. RR |
| 23 |
|
resubcl |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A - 0 ) e. RR ) |
| 24 |
21 22 23
|
sylancl |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) e. RR ) |
| 25 |
|
2re |
|- 2 e. RR |
| 26 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
| 27 |
25 21 26
|
sylancr |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. RR ) |
| 28 |
|
simp2 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. ( 0 ... A ) ) |
| 29 |
|
simp3 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. ( 0 ... A ) ) |
| 30 |
24
|
leidd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) <_ ( A - 0 ) ) |
| 31 |
|
fzmaxdif |
|- ( ( ( A e. ZZ /\ B e. ( 0 ... A ) ) /\ ( A e. ZZ /\ C e. ( 0 ... A ) ) /\ ( A - 0 ) <_ ( A - 0 ) ) -> ( abs ` ( B - C ) ) <_ ( A - 0 ) ) |
| 32 |
3 28 3 29 30 31
|
syl221anc |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) <_ ( A - 0 ) ) |
| 33 |
|
nnrp |
|- ( A e. NN -> A e. RR+ ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. RR+ ) |
| 35 |
21 34
|
ltaddrpd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A < ( A + A ) ) |
| 36 |
21
|
recnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. CC ) |
| 37 |
36
|
subid1d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) = A ) |
| 38 |
36
|
2timesd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) = ( A + A ) ) |
| 39 |
35 37 38
|
3brtr4d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) < ( 2 x. A ) ) |
| 40 |
19 24 27 32 39
|
lelttrd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) |
| 41 |
40
|
adantr |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) |
| 42 |
|
2nn |
|- 2 e. NN |
| 43 |
|
simpl1 |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> A e. NN ) |
| 44 |
|
nnmulcl |
|- ( ( 2 e. NN /\ A e. NN ) -> ( 2 x. A ) e. NN ) |
| 45 |
42 43 44
|
sylancr |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( 2 x. A ) e. NN ) |
| 46 |
|
simpl2 |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B e. ( 0 ... A ) ) |
| 47 |
46
|
elfzelzd |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B e. ZZ ) |
| 48 |
|
simpl3 |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> C e. ( 0 ... A ) ) |
| 49 |
48
|
elfzelzd |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> C e. ZZ ) |
| 50 |
|
simpr |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( 2 x. A ) || ( B - C ) ) |
| 51 |
|
congabseq |
|- ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ C e. ZZ ) /\ ( 2 x. A ) || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < ( 2 x. A ) <-> B = C ) ) |
| 52 |
45 47 49 50 51
|
syl31anc |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < ( 2 x. A ) <-> B = C ) ) |
| 53 |
41 52
|
mpbid |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B = C ) |
| 54 |
|
simpll2 |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. ( 0 ... A ) ) |
| 55 |
|
elfzle1 |
|- ( B e. ( 0 ... A ) -> 0 <_ B ) |
| 56 |
54 55
|
syl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ B ) |
| 57 |
7
|
zred |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. RR ) |
| 58 |
16
|
zred |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. RR ) |
| 59 |
58
|
renegcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u C e. RR ) |
| 60 |
57 59
|
resubcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) e. RR ) |
| 61 |
60
|
recnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) e. CC ) |
| 62 |
61
|
abscld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - -u C ) ) e. RR ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) e. RR ) |
| 64 |
|
1re |
|- 1 e. RR |
| 65 |
|
resubcl |
|- ( ( A e. RR /\ 1 e. RR ) -> ( A - 1 ) e. RR ) |
| 66 |
21 64 65
|
sylancl |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. RR ) |
| 67 |
66
|
renegcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u ( A - 1 ) e. RR ) |
| 68 |
21 67
|
resubcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) e. RR ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( A - -u ( A - 1 ) ) e. RR ) |
| 70 |
27
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) e. RR ) |
| 71 |
7
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. ZZ ) |
| 72 |
71
|
zcnd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. CC ) |
| 73 |
16
|
znegcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u C e. ZZ ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ZZ ) |
| 75 |
74
|
zcnd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. CC ) |
| 76 |
72 75
|
abssubd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) = ( abs ` ( -u C - B ) ) ) |
| 77 |
|
0zd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 e. ZZ ) |
| 78 |
|
simpr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C e. ( 0 ... ( A - 1 ) ) ) |
| 79 |
|
0zd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 0 e. ZZ ) |
| 80 |
|
1z |
|- 1 e. ZZ |
| 81 |
|
zsubcl |
|- ( ( A e. ZZ /\ 1 e. ZZ ) -> ( A - 1 ) e. ZZ ) |
| 82 |
3 80 81
|
sylancl |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. ZZ ) |
| 83 |
|
fzneg |
|- ( ( C e. ZZ /\ 0 e. ZZ /\ ( A - 1 ) e. ZZ ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) |
| 84 |
16 79 82 83
|
syl3anc |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) |
| 85 |
84
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) |
| 86 |
78 85
|
mpbid |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) |
| 87 |
|
neg0 |
|- -u 0 = 0 |
| 88 |
87
|
a1i |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u 0 = 0 ) |
| 89 |
88
|
oveq2d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( -u ( A - 1 ) ... -u 0 ) = ( -u ( A - 1 ) ... 0 ) ) |
| 90 |
86 89
|
eleqtrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ( -u ( A - 1 ) ... 0 ) ) |
| 91 |
3
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> A e. ZZ ) |
| 92 |
|
simp1 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. NN ) |
| 93 |
42 92 44
|
sylancr |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. NN ) |
| 94 |
|
nnm1nn0 |
|- ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) - 1 ) e. NN0 ) |
| 95 |
93 94
|
syl |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) e. NN0 ) |
| 96 |
95
|
nn0ge0d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 0 <_ ( ( 2 x. A ) - 1 ) ) |
| 97 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 98 |
97
|
a1i |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 0 - 0 ) = 0 ) |
| 99 |
|
1cnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 1 e. CC ) |
| 100 |
36 36 99
|
addsubassd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) - 1 ) = ( A + ( A - 1 ) ) ) |
| 101 |
38
|
oveq1d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) = ( ( A + A ) - 1 ) ) |
| 102 |
|
ax-1cn |
|- 1 e. CC |
| 103 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
| 104 |
36 102 103
|
sylancl |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. CC ) |
| 105 |
36 104
|
subnegd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) = ( A + ( A - 1 ) ) ) |
| 106 |
100 101 105
|
3eqtr4rd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) = ( ( 2 x. A ) - 1 ) ) |
| 107 |
96 98 106
|
3brtr4d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) |
| 108 |
107
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) |
| 109 |
|
fzmaxdif |
|- ( ( ( 0 e. ZZ /\ -u C e. ( -u ( A - 1 ) ... 0 ) ) /\ ( A e. ZZ /\ B e. ( 0 ... A ) ) /\ ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) -> ( abs ` ( -u C - B ) ) <_ ( A - -u ( A - 1 ) ) ) |
| 110 |
77 90 91 54 108 109
|
syl221anc |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( -u C - B ) ) <_ ( A - -u ( A - 1 ) ) ) |
| 111 |
76 110
|
eqbrtrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) <_ ( A - -u ( A - 1 ) ) ) |
| 112 |
27
|
ltm1d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) < ( 2 x. A ) ) |
| 113 |
106 112
|
eqbrtrd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) < ( 2 x. A ) ) |
| 114 |
113
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( A - -u ( A - 1 ) ) < ( 2 x. A ) ) |
| 115 |
63 69 70 111 114
|
lelttrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) < ( 2 x. A ) ) |
| 116 |
93
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) e. NN ) |
| 117 |
|
simplr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) || ( B - -u C ) ) |
| 118 |
|
congabseq |
|- ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ -u C e. ZZ ) /\ ( 2 x. A ) || ( B - -u C ) ) -> ( ( abs ` ( B - -u C ) ) < ( 2 x. A ) <-> B = -u C ) ) |
| 119 |
116 71 74 117 118
|
syl31anc |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( ( abs ` ( B - -u C ) ) < ( 2 x. A ) <-> B = -u C ) ) |
| 120 |
115 119
|
mpbid |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B = -u C ) |
| 121 |
56 120
|
breqtrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ -u C ) |
| 122 |
|
elfzelz |
|- ( C e. ( 0 ... ( A - 1 ) ) -> C e. ZZ ) |
| 123 |
122
|
zred |
|- ( C e. ( 0 ... ( A - 1 ) ) -> C e. RR ) |
| 124 |
123
|
adantl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C e. RR ) |
| 125 |
124
|
le0neg1d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C <_ 0 <-> 0 <_ -u C ) ) |
| 126 |
121 125
|
mpbird |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C <_ 0 ) |
| 127 |
|
elfzle1 |
|- ( C e. ( 0 ... ( A - 1 ) ) -> 0 <_ C ) |
| 128 |
127
|
adantl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ C ) |
| 129 |
|
letri3 |
|- ( ( C e. RR /\ 0 e. RR ) -> ( C = 0 <-> ( C <_ 0 /\ 0 <_ C ) ) ) |
| 130 |
124 22 129
|
sylancl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C = 0 <-> ( C <_ 0 /\ 0 <_ C ) ) ) |
| 131 |
126 128 130
|
mpbir2and |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C = 0 ) |
| 132 |
131
|
negeqd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C = -u 0 ) |
| 133 |
132 88
|
eqtrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C = 0 ) |
| 134 |
133 120 131
|
3eqtr4d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B = C ) |
| 135 |
|
oveq2 |
|- ( C = A -> ( B - C ) = ( B - A ) ) |
| 136 |
135
|
adantl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - C ) = ( B - A ) ) |
| 137 |
136
|
fveq2d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - C ) ) = ( abs ` ( B - A ) ) ) |
| 138 |
40
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) |
| 139 |
137 138
|
eqbrtrrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - A ) ) < ( 2 x. A ) ) |
| 140 |
93
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) e. NN ) |
| 141 |
7
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B e. ZZ ) |
| 142 |
3
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> A e. ZZ ) |
| 143 |
|
simplr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( B - -u C ) ) |
| 144 |
7
|
zcnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. CC ) |
| 145 |
36 36 144
|
ppncand |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) + ( B - A ) ) = ( A + B ) ) |
| 146 |
36 144
|
addcomd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A + B ) = ( B + A ) ) |
| 147 |
145 146
|
eqtrd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) + ( B - A ) ) = ( B + A ) ) |
| 148 |
147
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( A + A ) + ( B - A ) ) = ( B + A ) ) |
| 149 |
|
oveq2 |
|- ( C = A -> ( B + C ) = ( B + A ) ) |
| 150 |
149
|
adantl |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B + C ) = ( B + A ) ) |
| 151 |
148 150
|
eqtr4d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( A + A ) + ( B - A ) ) = ( B + C ) ) |
| 152 |
38
|
oveq1d |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) + ( B - A ) ) = ( ( A + A ) + ( B - A ) ) ) |
| 153 |
152
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) + ( B - A ) ) = ( ( A + A ) + ( B - A ) ) ) |
| 154 |
16
|
zcnd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. CC ) |
| 155 |
144 154
|
subnegd |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) = ( B + C ) ) |
| 156 |
155
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - -u C ) = ( B + C ) ) |
| 157 |
151 153 156
|
3eqtr4d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) + ( B - A ) ) = ( B - -u C ) ) |
| 158 |
143 157
|
breqtrrd |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) |
| 159 |
5
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) e. ZZ ) |
| 160 |
7 3
|
zsubcld |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - A ) e. ZZ ) |
| 161 |
160
|
ad2antrr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - A ) e. ZZ ) |
| 162 |
|
dvdsadd |
|- ( ( ( 2 x. A ) e. ZZ /\ ( B - A ) e. ZZ ) -> ( ( 2 x. A ) || ( B - A ) <-> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) ) |
| 163 |
159 161 162
|
syl2anc |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) || ( B - A ) <-> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) ) |
| 164 |
158 163
|
mpbird |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( B - A ) ) |
| 165 |
|
congabseq |
|- ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ A e. ZZ ) /\ ( 2 x. A ) || ( B - A ) ) -> ( ( abs ` ( B - A ) ) < ( 2 x. A ) <-> B = A ) ) |
| 166 |
140 141 142 164 165
|
syl31anc |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( abs ` ( B - A ) ) < ( 2 x. A ) <-> B = A ) ) |
| 167 |
139 166
|
mpbid |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B = A ) |
| 168 |
|
simpr |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> C = A ) |
| 169 |
167 168
|
eqtr4d |
|- ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B = C ) |
| 170 |
|
nnnn0 |
|- ( A e. NN -> A e. NN0 ) |
| 171 |
170
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. NN0 ) |
| 172 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 173 |
171 172
|
eleqtrdi |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. ( ZZ>= ` 0 ) ) |
| 174 |
|
fzm1 |
|- ( A e. ( ZZ>= ` 0 ) -> ( C e. ( 0 ... A ) <-> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) ) |
| 175 |
174
|
biimpa |
|- ( ( A e. ( ZZ>= ` 0 ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) |
| 176 |
173 29 175
|
syl2anc |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) |
| 177 |
176
|
adantr |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) |
| 178 |
134 169 177
|
mpjaodan |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) -> B = C ) |
| 179 |
53 178
|
jaodan |
|- ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) -> B = C ) |
| 180 |
14 179
|
impbida |
|- ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B = C <-> ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) ) |