Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | acongeq12d.1 | |- ( ph -> B = C ) |
|
acongeq12d.2 | |- ( ph -> D = E ) |
||
Assertion | acongeq12d | |- ( ph -> ( ( A || ( B - D ) \/ A || ( B - -u D ) ) <-> ( A || ( C - E ) \/ A || ( C - -u E ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acongeq12d.1 | |- ( ph -> B = C ) |
|
2 | acongeq12d.2 | |- ( ph -> D = E ) |
|
3 | 1 2 | oveq12d | |- ( ph -> ( B - D ) = ( C - E ) ) |
4 | 3 | breq2d | |- ( ph -> ( A || ( B - D ) <-> A || ( C - E ) ) ) |
5 | 2 | negeqd | |- ( ph -> -u D = -u E ) |
6 | 1 5 | oveq12d | |- ( ph -> ( B - -u D ) = ( C - -u E ) ) |
7 | 6 | breq2d | |- ( ph -> ( A || ( B - -u D ) <-> A || ( C - -u E ) ) ) |
8 | 4 7 | orbi12d | |- ( ph -> ( ( A || ( B - D ) \/ A || ( B - -u D ) ) <-> ( A || ( C - E ) \/ A || ( C - -u E ) ) ) ) |