Step |
Hyp |
Ref |
Expression |
1 |
|
congsym |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) |
2 |
1
|
exp32 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( C e. ZZ -> ( A || ( B - C ) -> A || ( C - B ) ) ) ) |
3 |
2
|
3impia |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - C ) -> A || ( C - B ) ) ) |
4 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
5 |
4
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) |
6 |
5
|
negnegd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> -u -u B = B ) |
7 |
6
|
oveq1d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -u -u B - -u C ) = ( B - -u C ) ) |
8 |
4
|
negcld |
|- ( B e. ZZ -> -u B e. CC ) |
9 |
8
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> -u B e. CC ) |
10 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
11 |
10
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) |
12 |
9 11
|
neg2subd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -u -u B - -u C ) = ( C - -u B ) ) |
13 |
7 12
|
eqtr3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B - -u C ) = ( C - -u B ) ) |
14 |
13
|
breq2d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u C ) <-> A || ( C - -u B ) ) ) |
15 |
14
|
biimpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u C ) -> A || ( C - -u B ) ) ) |
16 |
3 15
|
orim12d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( B - C ) \/ A || ( B - -u C ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) ) |
17 |
16
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( A || ( B - C ) \/ A || ( B - -u C ) ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) |