Step |
Hyp |
Ref |
Expression |
1 |
|
dfcgra2.p |
|- P = ( Base ` G ) |
2 |
|
dfcgra2.i |
|- I = ( Itv ` G ) |
3 |
|
dfcgra2.m |
|- .- = ( dist ` G ) |
4 |
|
dfcgra2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
dfcgra2.a |
|- ( ph -> A e. P ) |
6 |
|
dfcgra2.b |
|- ( ph -> B e. P ) |
7 |
|
dfcgra2.c |
|- ( ph -> C e. P ) |
8 |
|
dfcgra2.d |
|- ( ph -> D e. P ) |
9 |
|
dfcgra2.e |
|- ( ph -> E e. P ) |
10 |
|
dfcgra2.f |
|- ( ph -> F e. P ) |
11 |
|
acopy.l |
|- L = ( LineG ` G ) |
12 |
|
acopy.1 |
|- ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) |
13 |
|
acopy.2 |
|- ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) |
14 |
|
acopyeu.x |
|- ( ph -> X e. P ) |
15 |
|
acopyeu.y |
|- ( ph -> Y e. P ) |
16 |
|
acopyeu.k |
|- K = ( hlG ` G ) |
17 |
|
acopyeu.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E X "> ) |
18 |
|
acopyeu.2 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E Y "> ) |
19 |
|
acopyeu.3 |
|- ( ph -> X ( ( hpG ` G ) ` ( D L E ) ) F ) |
20 |
|
acopyeu.4 |
|- ( ph -> Y ( ( hpG ` G ) ` ( D L E ) ) F ) |
21 |
14
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> X e. P ) |
22 |
21
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X e. P ) |
23 |
|
simplr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y e. P ) |
24 |
15
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> Y e. P ) |
25 |
24
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y e. P ) |
26 |
4
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> G e. TarskiG ) |
27 |
26
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> G e. TarskiG ) |
28 |
9
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. P ) |
29 |
28
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> E e. P ) |
30 |
5
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A e. P ) |
31 |
30
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> A e. P ) |
32 |
6
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> B e. P ) |
33 |
32
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> B e. P ) |
34 |
7
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> C e. P ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> C e. P ) |
36 |
|
simplr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. P ) |
37 |
36
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> d e. P ) |
38 |
10
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> F e. P ) |
39 |
38
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> F e. P ) |
40 |
12
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) |
41 |
40
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) |
42 |
8
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> D e. P ) |
43 |
13
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( D e. ( E L F ) \/ E = F ) ) |
44 |
|
simprl |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d ( K ` E ) D ) |
45 |
1 2 16 36 42 28 26 11 44
|
hlln |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. ( D L E ) ) |
46 |
1 2 16 36 42 28 26 44
|
hlne1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d =/= E ) |
47 |
1 2 11 26 42 28 38 36 43 45 46
|
ncolncol |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) |
48 |
47
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) |
49 |
|
simprr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E .- d ) = ( B .- A ) ) |
50 |
1 3 2 26 28 36 32 30 49
|
tgcgrcomlr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( d .- E ) = ( A .- B ) ) |
51 |
50
|
eqcomd |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( A .- B ) = ( d .- E ) ) |
52 |
51
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( A .- B ) = ( d .- E ) ) |
53 |
|
simpl |
|- ( ( u = a /\ v = b ) -> u = a ) |
54 |
53
|
eleq1d |
|- ( ( u = a /\ v = b ) -> ( u e. ( P \ ( d L E ) ) <-> a e. ( P \ ( d L E ) ) ) ) |
55 |
|
simpr |
|- ( ( u = a /\ v = b ) -> v = b ) |
56 |
55
|
eleq1d |
|- ( ( u = a /\ v = b ) -> ( v e. ( P \ ( d L E ) ) <-> b e. ( P \ ( d L E ) ) ) ) |
57 |
54 56
|
anbi12d |
|- ( ( u = a /\ v = b ) -> ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) <-> ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) ) ) |
58 |
|
simpr |
|- ( ( ( u = a /\ v = b ) /\ w = t ) -> w = t ) |
59 |
|
simpll |
|- ( ( ( u = a /\ v = b ) /\ w = t ) -> u = a ) |
60 |
|
simplr |
|- ( ( ( u = a /\ v = b ) /\ w = t ) -> v = b ) |
61 |
59 60
|
oveq12d |
|- ( ( ( u = a /\ v = b ) /\ w = t ) -> ( u I v ) = ( a I b ) ) |
62 |
58 61
|
eleq12d |
|- ( ( ( u = a /\ v = b ) /\ w = t ) -> ( w e. ( u I v ) <-> t e. ( a I b ) ) ) |
63 |
62
|
cbvrexdva |
|- ( ( u = a /\ v = b ) -> ( E. w e. ( d L E ) w e. ( u I v ) <-> E. t e. ( d L E ) t e. ( a I b ) ) ) |
64 |
57 63
|
anbi12d |
|- ( ( u = a /\ v = b ) -> ( ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) /\ E. w e. ( d L E ) w e. ( u I v ) ) <-> ( ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) /\ E. t e. ( d L E ) t e. ( a I b ) ) ) ) |
65 |
64
|
cbvopabv |
|- { <. u , v >. | ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) /\ E. w e. ( d L E ) w e. ( u I v ) ) } = { <. a , b >. | ( ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) /\ E. t e. ( d L E ) t e. ( a I b ) ) } |
66 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x e. P ) |
67 |
|
simprll |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> <" A B C "> ( cgrG ` G ) <" d E x "> ) |
68 |
|
simprrl |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> <" A B C "> ( cgrG ` G ) <" d E y "> ) |
69 |
1 2 11 26 36 28 46
|
tgelrnln |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( d L E ) e. ran L ) |
70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( d L E ) e. ran L ) |
71 |
1 2 11 26 36 28 46
|
tglinerflx2 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. ( d L E ) ) |
72 |
71
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> E e. ( d L E ) ) |
73 |
42
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> D e. P ) |
74 |
1 11 2 4 6 7 5 12
|
ncolrot2 |
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |
75 |
1 2 3 4 5 6 7 8 9 14 17 11 74
|
cgrancol |
|- ( ph -> -. ( X e. ( D L E ) \/ D = E ) ) |
76 |
1 11 2 4 8 9 14 75
|
ncolcom |
|- ( ph -> -. ( X e. ( E L D ) \/ E = D ) ) |
77 |
76
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( X e. ( E L D ) \/ E = D ) ) |
78 |
|
simprlr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( K ` E ) X ) |
79 |
1 2 16 66 22 29 27 11 78
|
hlln |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x e. ( X L E ) ) |
80 |
1 2 16 66 22 29 27 78
|
hlne1 |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x =/= E ) |
81 |
1 2 11 27 22 29 73 66 77 79 80
|
ncolncol |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( x e. ( E L D ) \/ E = D ) ) |
82 |
1 11 2 27 29 73 66 81
|
ncolcom |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( x e. ( D L E ) \/ D = E ) ) |
83 |
|
pm2.45 |
|- ( -. ( x e. ( D L E ) \/ D = E ) -> -. x e. ( D L E ) ) |
84 |
82 83
|
syl |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. x e. ( D L E ) ) |
85 |
1 2 11 4 8 9 10 13
|
ncolne1 |
|- ( ph -> D =/= E ) |
86 |
1 2 11 4 8 9 85
|
tgelrnln |
|- ( ph -> ( D L E ) e. ran L ) |
87 |
86
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( D L E ) e. ran L ) |
88 |
1 2 11 4 8 9 85
|
tglinerflx2 |
|- ( ph -> E e. ( D L E ) ) |
89 |
88
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. ( D L E ) ) |
90 |
1 2 11 26 36 28 46 46 87 45 89
|
tglinethru |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( D L E ) = ( d L E ) ) |
91 |
90
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( D L E ) = ( d L E ) ) |
92 |
84 91
|
neleqtrd |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. x e. ( d L E ) ) |
93 |
1 2 11 27 70 29 65 16 72 66 22 92 78
|
hphl |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( ( hpG ` G ) ` ( d L E ) ) X ) |
94 |
90
|
fveq2d |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) |
95 |
94
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) |
96 |
19
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( ( hpG ` G ) ` ( D L E ) ) F ) |
97 |
95 96
|
breqdi |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( ( hpG ` G ) ` ( d L E ) ) F ) |
98 |
1 2 11 27 70 66 65 22 93 39 97
|
hpgtr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( ( hpG ` G ) ` ( d L E ) ) F ) |
99 |
1 2 3 4 5 6 7 8 9 15 18 11 74
|
cgrancol |
|- ( ph -> -. ( Y e. ( D L E ) \/ D = E ) ) |
100 |
1 11 2 4 8 9 15 99
|
ncolcom |
|- ( ph -> -. ( Y e. ( E L D ) \/ E = D ) ) |
101 |
100
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( Y e. ( E L D ) \/ E = D ) ) |
102 |
|
simprrr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( K ` E ) Y ) |
103 |
1 2 16 23 25 29 27 11 102
|
hlln |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y e. ( Y L E ) ) |
104 |
1 2 16 23 25 29 27 102
|
hlne1 |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y =/= E ) |
105 |
1 2 11 27 25 29 73 23 101 103 104
|
ncolncol |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( y e. ( E L D ) \/ E = D ) ) |
106 |
1 11 2 27 29 73 23 105
|
ncolcom |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( y e. ( D L E ) \/ D = E ) ) |
107 |
|
pm2.45 |
|- ( -. ( y e. ( D L E ) \/ D = E ) -> -. y e. ( D L E ) ) |
108 |
106 107
|
syl |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. y e. ( D L E ) ) |
109 |
108 91
|
neleqtrd |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. y e. ( d L E ) ) |
110 |
1 2 11 27 70 29 65 16 72 23 25 109 102
|
hphl |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( ( hpG ` G ) ` ( d L E ) ) Y ) |
111 |
20
|
ad5antr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y ( ( hpG ` G ) ` ( D L E ) ) F ) |
112 |
95 111
|
breqdi |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y ( ( hpG ` G ) ` ( d L E ) ) F ) |
113 |
1 2 11 27 70 23 65 25 110 39 112
|
hpgtr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( ( hpG ` G ) ` ( d L E ) ) F ) |
114 |
1 3 2 11 16 27 31 33 35 37 29 39 41 48 52 65 66 23 67 68 98 113
|
trgcopyeulem |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x = y ) |
115 |
114 78
|
eqbrtrrd |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( K ` E ) X ) |
116 |
1 2 16 23 22 29 27 115
|
hlcomd |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( K ` E ) y ) |
117 |
1 2 16 22 23 25 27 29 116 102
|
hltr |
|- ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( K ` E ) Y ) |
118 |
17
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E X "> ) |
119 |
1 2 16 26 30 32 34 42 28 21 118 36 44
|
cgrahl1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" d E X "> ) |
120 |
1 2 11 4 5 6 7 12
|
ncolne1 |
|- ( ph -> A =/= B ) |
121 |
120
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A =/= B ) |
122 |
1 2 16 26 30 32 34 36 28 21 3 121 51
|
iscgra1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( <" A B C "> ( cgrA ` G ) <" d E X "> <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) ) ) |
123 |
119 122
|
mpbid |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) ) |
124 |
18
|
ad2antrr |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E Y "> ) |
125 |
1 2 16 26 30 32 34 42 28 24 124 36 44
|
cgrahl1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" d E Y "> ) |
126 |
1 2 16 26 30 32 34 36 28 24 3 121 51
|
iscgra1 |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( <" A B C "> ( cgrA ` G ) <" d E Y "> <-> E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) |
127 |
125 126
|
mpbid |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) |
128 |
|
reeanv |
|- ( E. x e. P E. y e. P ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) <-> ( E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) |
129 |
123 127 128
|
sylanbrc |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. x e. P E. y e. P ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) |
130 |
117 129
|
r19.29vva |
|- ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> X ( K ` E ) Y ) |
131 |
120
|
necomd |
|- ( ph -> B =/= A ) |
132 |
1 2 16 9 6 5 4 8 3 85 131
|
hlcgrex |
|- ( ph -> E. d e. P ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) |
133 |
130 132
|
r19.29a |
|- ( ph -> X ( K ` E ) Y ) |