Metamath Proof Explorer


Theorem acos1

Description: The arccosine of 1 is 0 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acos1
|- ( arccos ` 1 ) = 0

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 acosval
 |-  ( 1 e. CC -> ( arccos ` 1 ) = ( ( _pi / 2 ) - ( arcsin ` 1 ) ) )
3 1 2 ax-mp
 |-  ( arccos ` 1 ) = ( ( _pi / 2 ) - ( arcsin ` 1 ) )
4 asin1
 |-  ( arcsin ` 1 ) = ( _pi / 2 )
5 4 oveq2i
 |-  ( ( _pi / 2 ) - ( arcsin ` 1 ) ) = ( ( _pi / 2 ) - ( _pi / 2 ) )
6 picn
 |-  _pi e. CC
7 halfcl
 |-  ( _pi e. CC -> ( _pi / 2 ) e. CC )
8 6 7 ax-mp
 |-  ( _pi / 2 ) e. CC
9 8 subidi
 |-  ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0
10 3 5 9 3eqtri
 |-  ( arccos ` 1 ) = 0