Step |
Hyp |
Ref |
Expression |
1 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
2 |
1
|
fveq2d |
|- ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
3 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
4 |
3
|
recni |
|- ( _pi / 2 ) e. CC |
5 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
6 |
|
resub |
|- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) ) |
7 |
4 5 6
|
sylancr |
|- ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) ) |
8 |
|
rere |
|- ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) ) |
9 |
3 8
|
ax-mp |
|- ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) |
10 |
9
|
oveq1i |
|- ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) |
11 |
7 10
|
eqtrdi |
|- ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
12 |
2 11
|
eqtrd |
|- ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
13 |
5
|
recld |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. RR ) |
14 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR ) |
15 |
3 13 14
|
sylancr |
|- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR ) |
16 |
|
asinbnd |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
17 |
|
neghalfpire |
|- -u ( _pi / 2 ) e. RR |
18 |
17 3
|
elicc2i |
|- ( ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
19 |
16 18
|
sylib |
|- ( A e. CC -> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
20 |
19
|
simp3d |
|- ( A e. CC -> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) |
21 |
|
subge0 |
|- ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
22 |
3 13 21
|
sylancr |
|- ( A e. CC -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) ) |
23 |
20 22
|
mpbird |
|- ( A e. CC -> 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) ) |
24 |
3
|
a1i |
|- ( A e. CC -> ( _pi / 2 ) e. RR ) |
25 |
|
pire |
|- _pi e. RR |
26 |
25
|
a1i |
|- ( A e. CC -> _pi e. RR ) |
27 |
25
|
recni |
|- _pi e. CC |
28 |
17
|
recni |
|- -u ( _pi / 2 ) e. CC |
29 |
27 4
|
negsubi |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
30 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
31 |
27 4 4 30
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
32 |
29 31
|
eqtri |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
33 |
4 27 28 32
|
subaddrii |
|- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
34 |
19
|
simp2d |
|- ( A e. CC -> -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) ) |
35 |
33 34
|
eqbrtrid |
|- ( A e. CC -> ( ( _pi / 2 ) - _pi ) <_ ( Re ` ( arcsin ` A ) ) ) |
36 |
24 26 13 35
|
subled |
|- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi ) |
37 |
|
0re |
|- 0 e. RR |
38 |
37 25
|
elicc2i |
|- ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR /\ 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) /\ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi ) ) |
39 |
15 23 36 38
|
syl3anbrc |
|- ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) ) |
40 |
12 39
|
eqeltrd |
|- ( A e. CC -> ( Re ` ( arccos ` A ) ) e. ( 0 [,] _pi ) ) |