| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							acosval | 
							 |-  ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							 |-  ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							halfpire | 
							 |-  ( _pi / 2 ) e. RR  | 
						
						
							| 4 | 
							
								3
							 | 
							recni | 
							 |-  ( _pi / 2 ) e. CC  | 
						
						
							| 5 | 
							
								
							 | 
							asincl | 
							 |-  ( A e. CC -> ( arcsin ` A ) e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							resub | 
							 |-  ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancr | 
							 |-  ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							rere | 
							 |-  ( ( _pi / 2 ) e. RR -> ( Re ` ( _pi / 2 ) ) = ( _pi / 2 ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							ax-mp | 
							 |-  ( Re ` ( _pi / 2 ) ) = ( _pi / 2 )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1i | 
							 |-  ( ( Re ` ( _pi / 2 ) ) - ( Re ` ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrdi | 
							 |-  ( A e. CC -> ( Re ` ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqtrd | 
							 |-  ( A e. CC -> ( Re ` ( arccos ` A ) ) = ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) )  | 
						
						
							| 13 | 
							
								5
							 | 
							recld | 
							 |-  ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. RR )  | 
						
						
							| 14 | 
							
								
							 | 
							resubcl | 
							 |-  ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR )  | 
						
						
							| 15 | 
							
								3 13 14
							 | 
							sylancr | 
							 |-  ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR )  | 
						
						
							| 16 | 
							
								
							 | 
							asinbnd | 
							 |-  ( A e. CC -> ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							neghalfpire | 
							 |-  -u ( _pi / 2 ) e. RR  | 
						
						
							| 18 | 
							
								17 3
							 | 
							elicc2i | 
							 |-  ( ( Re ` ( arcsin ` A ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							sylib | 
							 |-  ( A e. CC -> ( ( Re ` ( arcsin ` A ) ) e. RR /\ -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) /\ ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simp3d | 
							 |-  ( A e. CC -> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							subge0 | 
							 |-  ( ( ( _pi / 2 ) e. RR /\ ( Re ` ( arcsin ` A ) ) e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) )  | 
						
						
							| 22 | 
							
								3 13 21
							 | 
							sylancr | 
							 |-  ( A e. CC -> ( 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <-> ( Re ` ( arcsin ` A ) ) <_ ( _pi / 2 ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbird | 
							 |-  ( A e. CC -> 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) )  | 
						
						
							| 24 | 
							
								3
							 | 
							a1i | 
							 |-  ( A e. CC -> ( _pi / 2 ) e. RR )  | 
						
						
							| 25 | 
							
								
							 | 
							pire | 
							 |-  _pi e. RR  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							 |-  ( A e. CC -> _pi e. RR )  | 
						
						
							| 27 | 
							
								25
							 | 
							recni | 
							 |-  _pi e. CC  | 
						
						
							| 28 | 
							
								17
							 | 
							recni | 
							 |-  -u ( _pi / 2 ) e. CC  | 
						
						
							| 29 | 
							
								27 4
							 | 
							negsubi | 
							 |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							pidiv2halves | 
							 |-  ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi  | 
						
						
							| 31 | 
							
								27 4 4 30
							 | 
							subaddrii | 
							 |-  ( _pi - ( _pi / 2 ) ) = ( _pi / 2 )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							eqtri | 
							 |-  ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 )  | 
						
						
							| 33 | 
							
								4 27 28 32
							 | 
							subaddrii | 
							 |-  ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 )  | 
						
						
							| 34 | 
							
								19
							 | 
							simp2d | 
							 |-  ( A e. CC -> -u ( _pi / 2 ) <_ ( Re ` ( arcsin ` A ) ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqbrtrid | 
							 |-  ( A e. CC -> ( ( _pi / 2 ) - _pi ) <_ ( Re ` ( arcsin ` A ) ) )  | 
						
						
							| 36 | 
							
								24 26 13 35
							 | 
							subled | 
							 |-  ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi )  | 
						
						
							| 37 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 38 | 
							
								37 25
							 | 
							elicc2i | 
							 |-  ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. RR /\ 0 <_ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) /\ ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) <_ _pi ) )  | 
						
						
							| 39 | 
							
								15 23 36 38
							 | 
							syl3anbrc | 
							 |-  ( A e. CC -> ( ( _pi / 2 ) - ( Re ` ( arcsin ` A ) ) ) e. ( 0 [,] _pi ) )  | 
						
						
							| 40 | 
							
								12 39
							 | 
							eqeltrd | 
							 |-  ( A e. CC -> ( Re ` ( arccos ` A ) ) e. ( 0 [,] _pi ) )  |