Metamath Proof Explorer


Theorem acosf

Description: Domain and range of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosf
|- arccos : CC --> CC

Proof

Step Hyp Ref Expression
1 df-acos
 |-  arccos = ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) )
2 picn
 |-  _pi e. CC
3 halfcl
 |-  ( _pi e. CC -> ( _pi / 2 ) e. CC )
4 2 3 ax-mp
 |-  ( _pi / 2 ) e. CC
5 asincl
 |-  ( x e. CC -> ( arcsin ` x ) e. CC )
6 subcl
 |-  ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` x ) e. CC ) -> ( ( _pi / 2 ) - ( arcsin ` x ) ) e. CC )
7 4 5 6 sylancr
 |-  ( x e. CC -> ( ( _pi / 2 ) - ( arcsin ` x ) ) e. CC )
8 1 7 fmpti
 |-  arccos : CC --> CC