Step |
Hyp |
Ref |
Expression |
1 |
|
picn |
|- _pi e. CC |
2 |
|
halfcl |
|- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
3 |
1 2
|
ax-mp |
|- ( _pi / 2 ) e. CC |
4 |
|
asincl |
|- ( A e. CC -> ( arcsin ` A ) e. CC ) |
5 |
|
subneg |
|- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` A ) e. CC ) -> ( ( _pi / 2 ) - -u ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
6 |
3 4 5
|
sylancr |
|- ( A e. CC -> ( ( _pi / 2 ) - -u ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
7 |
|
asinneg |
|- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
8 |
7
|
oveq2d |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arcsin ` -u A ) ) = ( ( _pi / 2 ) - -u ( arcsin ` A ) ) ) |
9 |
1
|
a1i |
|- ( A e. CC -> _pi e. CC ) |
10 |
3
|
a1i |
|- ( A e. CC -> ( _pi / 2 ) e. CC ) |
11 |
9 10 4
|
subsubd |
|- ( A e. CC -> ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi - ( _pi / 2 ) ) + ( arcsin ` A ) ) ) |
12 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
13 |
1 3 3 12
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
14 |
13
|
oveq1i |
|- ( ( _pi - ( _pi / 2 ) ) + ( arcsin ` A ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) |
15 |
11 14
|
eqtrdi |
|- ( A e. CC -> ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) = ( ( _pi / 2 ) + ( arcsin ` A ) ) ) |
16 |
6 8 15
|
3eqtr4d |
|- ( A e. CC -> ( ( _pi / 2 ) - ( arcsin ` -u A ) ) = ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
17 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
18 |
|
acosval |
|- ( -u A e. CC -> ( arccos ` -u A ) = ( ( _pi / 2 ) - ( arcsin ` -u A ) ) ) |
19 |
17 18
|
syl |
|- ( A e. CC -> ( arccos ` -u A ) = ( ( _pi / 2 ) - ( arcsin ` -u A ) ) ) |
20 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
21 |
20
|
oveq2d |
|- ( A e. CC -> ( _pi - ( arccos ` A ) ) = ( _pi - ( ( _pi / 2 ) - ( arcsin ` A ) ) ) ) |
22 |
16 19 21
|
3eqtr4d |
|- ( A e. CC -> ( arccos ` -u A ) = ( _pi - ( arccos ` A ) ) ) |