Step |
Hyp |
Ref |
Expression |
1 |
|
neg1rr |
|- -u 1 e. RR |
2 |
|
1re |
|- 1 e. RR |
3 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
4 |
1 2 3
|
mp2an |
|- ( -u 1 [,] 1 ) C_ RR |
5 |
4
|
sseli |
|- ( A e. ( -u 1 [,] 1 ) -> A e. RR ) |
6 |
5
|
recnd |
|- ( A e. ( -u 1 [,] 1 ) -> A e. CC ) |
7 |
|
acosval |
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
8 |
6 7
|
syl |
|- ( A e. ( -u 1 [,] 1 ) -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
9 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
10 |
|
asinrecl |
|- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR ) |
11 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ ( arcsin ` A ) e. RR ) -> ( ( _pi / 2 ) - ( arcsin ` A ) ) e. RR ) |
12 |
9 10 11
|
sylancr |
|- ( A e. ( -u 1 [,] 1 ) -> ( ( _pi / 2 ) - ( arcsin ` A ) ) e. RR ) |
13 |
8 12
|
eqeltrd |
|- ( A e. ( -u 1 [,] 1 ) -> ( arccos ` A ) e. RR ) |