Metamath Proof Explorer


Theorem acosval

Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion acosval
|- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( x = A -> ( arcsin ` x ) = ( arcsin ` A ) )
2 1 oveq2d
 |-  ( x = A -> ( ( _pi / 2 ) - ( arcsin ` x ) ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) )
3 df-acos
 |-  arccos = ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) )
4 ovex
 |-  ( ( _pi / 2 ) - ( arcsin ` A ) ) e. _V
5 2 3 4 fvmpt
 |-  ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) )