Step |
Hyp |
Ref |
Expression |
1 |
|
acsmap2d.1 |
|- ( ph -> A e. ( ACS ` X ) ) |
2 |
|
acsmap2d.2 |
|- N = ( mrCls ` A ) |
3 |
|
acsmap2d.3 |
|- I = ( mrInd ` A ) |
4 |
|
acsmap2d.4 |
|- ( ph -> S e. I ) |
5 |
|
acsmap2d.5 |
|- ( ph -> T C_ X ) |
6 |
|
acsmap2d.6 |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |
7 |
|
acsinfd.7 |
|- ( ph -> -. S e. Fin ) |
8 |
1 2 3 4 5 6
|
acsmap2d |
|- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
9 |
|
simprr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S = U. ran f ) |
10 |
|
simprl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> ( ~P S i^i Fin ) ) |
11 |
|
inss2 |
|- ( ~P S i^i Fin ) C_ Fin |
12 |
|
fss |
|- ( ( f : T --> ( ~P S i^i Fin ) /\ ( ~P S i^i Fin ) C_ Fin ) -> f : T --> Fin ) |
13 |
10 11 12
|
sylancl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> Fin ) |
14 |
1 2 3 4 5 6 7
|
acsinfd |
|- ( ph -> -. T e. Fin ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> -. T e. Fin ) |
16 |
1
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> A e. ( ACS ` X ) ) |
17 |
16
|
elfvexd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> X e. _V ) |
18 |
5
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T C_ X ) |
19 |
17 18
|
ssexd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T e. _V ) |
20 |
13 15 19
|
unirnfdomd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> U. ran f ~<_ T ) |
21 |
9 20
|
eqbrtrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S ~<_ T ) |
22 |
8 21
|
exlimddv |
|- ( ph -> S ~<_ T ) |