Metamath Proof Explorer


Theorem acsfiel2

Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypothesis isacs2.f
|- F = ( mrCls ` C )
Assertion acsfiel2
|- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> ( S e. C <-> A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) )

Proof

Step Hyp Ref Expression
1 isacs2.f
 |-  F = ( mrCls ` C )
2 1 acsfiel
 |-  ( C e. ( ACS ` X ) -> ( S e. C <-> ( S C_ X /\ A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) ) )
3 2 baibd
 |-  ( ( C e. ( ACS ` X ) /\ S C_ X ) -> ( S e. C <-> A. y e. ( ~P S i^i Fin ) ( F ` y ) C_ S ) )