Metamath Proof Explorer


Theorem acsinfdimd

Description: In an algebraic closure system, if two independent sets have equal closure and one is infinite, then they are equinumerous. This is proven by using acsdomd twice with acsinfd . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsinfdimd.1
|- ( ph -> A e. ( ACS ` X ) )
acsinfdimd.2
|- N = ( mrCls ` A )
acsinfdimd.3
|- I = ( mrInd ` A )
acsinfdimd.4
|- ( ph -> S e. I )
acsinfdimd.5
|- ( ph -> T e. I )
acsinfdimd.6
|- ( ph -> ( N ` S ) = ( N ` T ) )
acsinfdimd.7
|- ( ph -> -. S e. Fin )
Assertion acsinfdimd
|- ( ph -> S ~~ T )

Proof

Step Hyp Ref Expression
1 acsinfdimd.1
 |-  ( ph -> A e. ( ACS ` X ) )
2 acsinfdimd.2
 |-  N = ( mrCls ` A )
3 acsinfdimd.3
 |-  I = ( mrInd ` A )
4 acsinfdimd.4
 |-  ( ph -> S e. I )
5 acsinfdimd.5
 |-  ( ph -> T e. I )
6 acsinfdimd.6
 |-  ( ph -> ( N ` S ) = ( N ` T ) )
7 acsinfdimd.7
 |-  ( ph -> -. S e. Fin )
8 1 acsmred
 |-  ( ph -> A e. ( Moore ` X ) )
9 3 8 5 mrissd
 |-  ( ph -> T C_ X )
10 1 2 3 4 9 6 7 acsdomd
 |-  ( ph -> S ~<_ T )
11 3 8 4 mrissd
 |-  ( ph -> S C_ X )
12 6 eqcomd
 |-  ( ph -> ( N ` T ) = ( N ` S ) )
13 1 2 3 4 9 6 7 acsinfd
 |-  ( ph -> -. T e. Fin )
14 1 2 3 5 11 12 13 acsdomd
 |-  ( ph -> T ~<_ S )
15 sbth
 |-  ( ( S ~<_ T /\ T ~<_ S ) -> S ~~ T )
16 10 14 15 syl2anc
 |-  ( ph -> S ~~ T )