Database
BASIC ORDER THEORY
Lattices
Subset order structures
acsinfdimd
Metamath Proof Explorer
Description: In an algebraic closure system, if two independent sets have equal
closure and one is infinite, then they are equinumerous. This is proven
by using acsdomd twice with acsinfd . See Section II.5 in Cohn
p. 81 to 82. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
acsinfdimd.1
|- ( ph -> A e. ( ACS ` X ) )
acsinfdimd.2
|- N = ( mrCls ` A )
acsinfdimd.3
|- I = ( mrInd ` A )
acsinfdimd.4
|- ( ph -> S e. I )
acsinfdimd.5
|- ( ph -> T e. I )
acsinfdimd.6
|- ( ph -> ( N ` S ) = ( N ` T ) )
acsinfdimd.7
|- ( ph -> -. S e. Fin )
Assertion
acsinfdimd
|- ( ph -> S ~~ T )
Proof
Step
Hyp
Ref
Expression
1
acsinfdimd.1
|- ( ph -> A e. ( ACS ` X ) )
2
acsinfdimd.2
|- N = ( mrCls ` A )
3
acsinfdimd.3
|- I = ( mrInd ` A )
4
acsinfdimd.4
|- ( ph -> S e. I )
5
acsinfdimd.5
|- ( ph -> T e. I )
6
acsinfdimd.6
|- ( ph -> ( N ` S ) = ( N ` T ) )
7
acsinfdimd.7
|- ( ph -> -. S e. Fin )
8
1
acsmred
|- ( ph -> A e. ( Moore ` X ) )
9
3 8 5
mrissd
|- ( ph -> T C_ X )
10
1 2 3 4 9 6 7
acsdomd
|- ( ph -> S ~<_ T )
11
3 8 4
mrissd
|- ( ph -> S C_ X )
12
6
eqcomd
|- ( ph -> ( N ` T ) = ( N ` S ) )
13
1 2 3 4 9 6 7
acsinfd
|- ( ph -> -. T e. Fin )
14
1 2 3 5 11 12 13
acsdomd
|- ( ph -> T ~<_ S )
15
sbth
|- ( ( S ~<_ T /\ T ~<_ S ) -> S ~~ T )
16
10 14 15
syl2anc
|- ( ph -> S ~~ T )