| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acsmap2d.1 |  |-  ( ph -> A e. ( ACS ` X ) ) | 
						
							| 2 |  | acsmap2d.2 |  |-  N = ( mrCls ` A ) | 
						
							| 3 |  | acsmap2d.3 |  |-  I = ( mrInd ` A ) | 
						
							| 4 |  | acsmap2d.4 |  |-  ( ph -> S e. I ) | 
						
							| 5 |  | acsmap2d.5 |  |-  ( ph -> T C_ X ) | 
						
							| 6 |  | acsmap2d.6 |  |-  ( ph -> ( N ` S ) = ( N ` T ) ) | 
						
							| 7 | 1 | acsmred |  |-  ( ph -> A e. ( Moore ` X ) ) | 
						
							| 8 | 3 7 4 | mrissd |  |-  ( ph -> S C_ X ) | 
						
							| 9 | 7 2 5 | mrcssidd |  |-  ( ph -> T C_ ( N ` T ) ) | 
						
							| 10 | 9 6 | sseqtrrd |  |-  ( ph -> T C_ ( N ` S ) ) | 
						
							| 11 | 1 2 8 10 | acsmapd |  |-  ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) | 
						
							| 12 |  | simprl |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> f : T --> ( ~P S i^i Fin ) ) | 
						
							| 13 | 7 | adantr |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> A e. ( Moore ` X ) ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S e. I ) | 
						
							| 15 | 3 13 14 | mrissd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ X ) | 
						
							| 16 | 13 2 15 | mrcssidd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` S ) ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) = ( N ` T ) ) | 
						
							| 18 |  | simprr |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> T C_ ( N ` U. ran f ) ) | 
						
							| 19 | 13 2 | mrcssvd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` U. ran f ) C_ X ) | 
						
							| 20 | 13 2 18 19 | mrcssd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` ( N ` U. ran f ) ) ) | 
						
							| 21 |  | frn |  |-  ( f : T --> ( ~P S i^i Fin ) -> ran f C_ ( ~P S i^i Fin ) ) | 
						
							| 22 | 21 | unissd |  |-  ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ U. ( ~P S i^i Fin ) ) | 
						
							| 23 |  | unifpw |  |-  U. ( ~P S i^i Fin ) = S | 
						
							| 24 | 22 23 | sseqtrdi |  |-  ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ S ) | 
						
							| 25 | 24 | ad2antrl |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ S ) | 
						
							| 26 | 25 15 | sstrd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ X ) | 
						
							| 27 | 13 2 26 | mrcidmd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` ( N ` U. ran f ) ) = ( N ` U. ran f ) ) | 
						
							| 28 | 20 27 | sseqtrd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` U. ran f ) ) | 
						
							| 29 | 17 28 | eqsstrd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) C_ ( N ` U. ran f ) ) | 
						
							| 30 | 16 29 | sstrd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` U. ran f ) ) | 
						
							| 31 | 13 2 3 30 25 14 | mrissmrcd |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S = U. ran f ) | 
						
							| 32 | 12 31 | jca |  |-  ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) | 
						
							| 33 | 32 | ex |  |-  ( ph -> ( ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) | 
						
							| 34 | 33 | eximdv |  |-  ( ph -> ( E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) | 
						
							| 35 | 11 34 | mpd |  |-  ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |