Metamath Proof Explorer


Theorem acufl

Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion acufl
|- ( CHOICE -> UFL = _V )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 pwex
 |-  ~P x e. _V
3 2 pwex
 |-  ~P ~P x e. _V
4 dfac10
 |-  ( CHOICE <-> dom card = _V )
5 4 biimpi
 |-  ( CHOICE -> dom card = _V )
6 3 5 eleqtrrid
 |-  ( CHOICE -> ~P ~P x e. dom card )
7 numufl
 |-  ( ~P ~P x e. dom card -> x e. UFL )
8 6 7 syl
 |-  ( CHOICE -> x e. UFL )
9 1 a1i
 |-  ( CHOICE -> x e. _V )
10 8 9 2thd
 |-  ( CHOICE -> ( x e. UFL <-> x e. _V ) )
11 10 eqrdv
 |-  ( CHOICE -> UFL = _V )