Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad2ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| Assertion | ad2ant2l | |- ( ( ( th /\ ph ) /\ ( ta /\ ps ) ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | 1 | adantrl | |- ( ( ph /\ ( ta /\ ps ) ) -> ch ) |
| 3 | 2 | adantll | |- ( ( ( th /\ ph ) /\ ( ta /\ ps ) ) -> ch ) |