Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad2ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| Assertion | ad2ant2lr | |- ( ( ( th /\ ph ) /\ ( ps /\ ta ) ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | 1 | adantrr | |- ( ( ph /\ ( ps /\ ta ) ) -> ch ) |
| 3 | 2 | adantll | |- ( ( ( th /\ ph ) /\ ( ps /\ ta ) ) -> ch ) |