Metamath Proof Explorer


Theorem ad2antrl

Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypothesis ad2ant.1
|- ( ph -> ps )
Assertion ad2antrl
|- ( ( ch /\ ( ph /\ th ) ) -> ps )

Proof

Step Hyp Ref Expression
1 ad2ant.1
 |-  ( ph -> ps )
2 1 adantl
 |-  ( ( ch /\ ph ) -> ps )
3 2 adantrr
 |-  ( ( ch /\ ( ph /\ th ) ) -> ps )