Metamath Proof Explorer


Theorem ad4ant123

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant3.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion ad4ant123
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ ta ) -> th )

Proof

Step Hyp Ref Expression
1 ad4ant3.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3expa
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
3 2 adantr
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ ta ) -> th )