Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
Assertion | ad5ant125 | |- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
2 | 1 | 3expia | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
3 | 2 | 2a1d | |- ( ( ph /\ ps ) -> ( ta -> ( et -> ( ch -> th ) ) ) ) |
4 | 3 | imp41 | |- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th ) |