Metamath Proof Explorer


Theorem ad5ant125

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Hypothesis ad5ant.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion ad5ant125
|- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 ad5ant.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3expia
 |-  ( ( ph /\ ps ) -> ( ch -> th ) )
3 2 2a1d
 |-  ( ( ph /\ ps ) -> ( ta -> ( et -> ( ch -> th ) ) ) )
4 3 imp41
 |-  ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th )