Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad5ant2345.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
Assertion | ad5ant2345 | |- ( ( ( ( ( et /\ ph ) /\ ps ) /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2345.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
2 | 1 | exp41 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
3 | 2 | adantl | |- ( ( et /\ ph ) -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
4 | 3 | imp41 | |- ( ( ( ( ( et /\ ph ) /\ ps ) /\ ch ) /\ th ) -> ta ) |