Metamath Proof Explorer


Theorem ad5ant2345

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypothesis ad5ant2345.1
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
Assertion ad5ant2345
|- ( ( ( ( ( et /\ ph ) /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 ad5ant2345.1
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
2 1 exp41
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
3 2 adantl
 |-  ( ( et /\ ph ) -> ( ps -> ( ch -> ( th -> ta ) ) ) )
4 3 imp41
 |-  ( ( ( ( ( et /\ ph ) /\ ps ) /\ ch ) /\ th ) -> ta )